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Abstract – The automated computation of muscle volume from 

MRI of human legs is an open problem in the biomedical 

imaging community. Such automation has the potential to 

provide an objective measure of effectiveness of pre- and post-

surgery treatments. In this paper, we take a step toward 

automation by proposing a framework for user interactive 

segmentation of MRI of human leg muscles. Our framework is 

built upon the strategy of bootstrapping: after the first few 

tedious segmentation results are achieved, and once a small 

database of segmented muscles is built, user interaction is 

reduced. Further, as the database of segmented muscles grows, 

the user interaction becomes more efficient. At the heart of this 

proposed framework is a simple, computationally attractive 3D 

representation of muscles. By a generalized cylinder model, we 

represent a 3D human leg muscle by two smooth 2D images, 

which enables application of 2D image processing and analysis 

methods in this complex multi-segment 3D problem. The 

smoothness of a leg muscle is modeled by the smoothness of the 

2D images. Interdependence and relative positions of leg 

muscles are represented by a linear combination (basically, 

convolutions) of such 2D images. We demonstrate that fitting 

and editing of these models during user interactive segmentation 

of MRI data are computationally efficient, because our linear 

interaction model can be represented in the Fourier domain. 

 

Index Terms— MRI, muscle segmentation, user 

interactive segmentation, 3D modeling. 

 

I. INTRODUCTION 

 

Skeletal muscle is the most abundant tissue in the human 

body and is essential for movement. Muscle volume is an 

important determinant of muscle functional capacity. In 

recent years, magnetic resonance imaging has become a 

ubiquitous tool to measure muscle volumes in vivo (e.g., 

Handsfield et al. [1], Hozlbaur et al. [2]).  Muscles are 

outlined individually across several two-dimensional images, 

and three-dimensional volumes are reconstructed from the 

2D outlines.  Currently, segmentation of muscles from 

magnetic resonance imaging (MRI) requires a high level of 

user input; for example, segmentation of one lower limb 

requires approximately 20 hours of user segmentation time.  

This intense level of user input limits the ultimate clinical or 

broad applicability of these measurements.  New algorithms 

for segmentation time would have a major impact on the 

biomechanics and physical medicine communities. 

 In the recent past, automated segmentation of portions of 

individual human leg muscles has been reported as in [3] and 

[4]. However, segmentation of the entire leg muscle system 

still remains an open problem. 

 

II. FRAMEWORK FOR INTERACTIVE SEGMENTATION 

 

Within the current practice within MRI muscle analysis, the 

final goal of this study is the drastic reduction of user 

interaction time. Toward this goal, our proposed framework 

will rely on the user-generated sets of volume-segmented 

MRI (Handsfield et al. [1]).  A database consisting of MRI 

data and corresponding muscle volume segmentation is 

depicted in Fig. 1, which shows the overall scheme of the 

proposed user interactive segmentation framework. When 

new MRI data are presented to the system, our method 

matches the new MRI with the MRIs in the database. If a 

satisfactory match (as evaluated by the user) is not found, the 

user will carry on the current practice of interactive 

segmentation.  

 On the other hand, if a satisfactory match is found, the 

volume segmentation corresponding to the matched MRI is 

brought in to the user. ‘Smart User Interaction’ as indicated 

in Fig. 1 then begins. So, instead of building the volume 

segmentation from scratch, the user practically makes 

corrections to already existing volume segmentation. This is 

the principal source of savings in interaction time. Note that 

as the database size grows, the entire framework will be able 

to present the user with accurate initial volume segmentation 

to start the interaction process. So, our proposed framework 

works on the principle of a bootstrapping method, which 

becomes more accurate and efficient as it matures with time. 

 Some of the essential elements of the smart user 

interaction module include: (a) movement of the muscle 

boundary in 2D on a slice, (b) movement of one muscle 

entirely in 2D or 3D, (c) movement of all muscles together in 

2D or 3D, (d) delete muscles, one at a time, (e) deletion of the 

upper or lower part of a muscle, and (f) addition of a muscle 

de novo. 
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Figure 1. Schematic of user interactive segmentation. 

 
Figure 2. A human leg muscle represented by stacked closed 

contours, i.e., a generalized cylinder model. 

 

III. MUSCLE SEGMENTAION TOOLBOX 

 

 
 

Figure 3. Snapshot of Muscle Segmentation Tool. 

 

A snapshot of the muscle segmentation toolbox is shown in 

Fig. 3. Some of the important technical activities which can 

be carried out with the help of this toolbox are as follows – 

(i) Navigating 3D patient data 

(ii) Labeling and outlining anatomical structures 

(iii) Visualizing anatomical surfaces in 3D 

(iv) Exporting anatomical measurements 

(v) Exporting high resolution images and videos 

The main parts of the toolbox are shown and labeled in Fig. 

3.  

 The slice selection tool contains a maximum intensity 

projection of the 3D volume in the posterior/anterior 

direction. The main display panel contains a single cross 

section of the 3D volume in the left/right and 

posterior/anterior plane (convention displays each axial 

cross-section from the feet looking towards the head i.e., from 

the inferior to the superior direction). These images are 

oriented with the right hand side of the patient on the left hand 

of the screen. Thus this slice selection tool allows the user to 

explore the 3D volume slice by slice by clicking a location 

within the image display and adjusting the slider. The green 

line highlights the current slice displayed within the main 

image panel and the red regions contain some anatomical 

structures. 

 The anatomy tool allows users to manually delineate 

anatomical structures from the 3D volume. Each 3D 

anatomical structure is comprised of a set of 2D contours, 

each contour outlining an anatomical structure on a single 

cross section of the 3D volume. 

 The atlas tool maintains a library of plausible contours 

for a specific slice of 3D dataset. 

 

IV. MATCHING MRI WITH DATABASE 

 
In this section we will briefly discuss how a new MRI image 

is automatically matched with the database. 

 Once a new MRI image (stack of 2D slices) comes in, 

we compute histograms of oriented gradients (HOG) [7] 

feature vector for each slice for this query image. We also 

pre-compute HOG feature vectors for all the slices within 

each study in the database. The database at the moment has 

65 fully segmented studies of legs from athletes, non-athletes, 

cerebral palsy patients and post-surgery patients with knee 

injuries. To compute HOG score between a query and a 

database image, for each slice in the query image, the best 

slice (defined by minimum L1 distance) within the database 

image is found. Then, these L1 distances are averaged over all 

the slices in the query image. This way each study in the 

database receives a HOG score. For a query image, the best 

match is then found by the minimum HOG score. 

 To validate this scheme, we consider an experiment, 

where each of the database studies take its turn as a query 

image and the corresponding database has 64 entries with 

query image deleted from the database. With this setup, along 

with the HOG scores, we are also able to compare user 

created segmentations for the studies. To compare two 

segmentations we utilize Jaccard scores (ratio of number of 

pixels belonging to the intersection over union of the two 

segmentations). Note that a higher Jaccard score implies a 

better match. In the left panel of Fig. 4, for a randomly chosen 

query image, we plot HOG scores versus Jaccard scores for 

all the database studies. Clearly, a negative trend in the scatter 

plot is observed, as expected. In the right panel of Fig. 4, we 

plot the minimum HOG scores and corresponding Jaccard 
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scores for all the query images. This right panel shows the 

spread of the Jaccard scores that we obtained by matching 

studies with the HOG feature. In the future, we plan to 

explore other features for MRI image retrieval. 

 

 
 
  

Figure 4. Plots of HOG Scores and Jaccard Scores.  

 
 

V. 3D-TO-2D MAPPING 

 

In order to attain the goal of user interactive segmentation 

efficiently, we propose to use generalized cylinders to model 

3D human leg muscles. These cylinders are a series of closed 

contour is stacked in the z-direction as shown in Fig. 2. In this 

3D-to-2D mapping, a muscle can be represented by two 2D 

images: x(z, t) and y(z, t), so that a point in 3D on the muscle 

boundary has the coordinates: (x(z, t), y(z, t), z), where t∈[0, 

1] is the normalized distance that parameterizes the contour. 

This is shown in Fig. 5. The top left and right panels of Fig. 

5 respectively show the images x and y by heat maps. Note 

that these images are not smooth, because when the contours 

were drawn by a user on the MRI slices, the starting points 

for contours were not necessarily close to each other for 

nearby slices. Moreover, on some slices, contours were 

drawn in the clockwise manner, while on other slices counter 

clockwise convention was followed. 

 
Figure 5. The top left and right panels show x(z, t) and y(z, t) 

respectively. Bottom left and right panels show reparameterized 

versions of x(z, t) and y(z, t), respectively. 

 

 We can choose the starting point of a contour on each 

slice and fix an order, either clockwise or counter clockwise 

by enforcing a smoothness constraint. We refer to this 

smoothing as reparameterization operation. This can be 

achieved with the following minimization: 

  
 The variable sz represents re-parameterizations of t, i.e., 

sz is the amount of circular shift of the zth row of x and y 

matrices. The minimization can be performed by dynamic 

programming, but, in practice, it actually reduces to a fast 

sequential row-by-row greedy optimization. The bottom 

panels of Fig. 5 show the reparameterized x and y images that 

appear smooth in the heat map. Notice that 

reparameterization has no effect on the shape of the 3D 

muscle. 

VI. INTRA-MUSCLE MODEL 

 
When a user moves a contour point on a muscle slice, the 

entire 3D stack of contours should move in a meaningful way. 

If the user moves a point on a slice, the neighboring points on 

the contour and neighboring contours should move and fit to 

the data, e.g., to the edges representing muscle boundaries. 

Note that moving a contour point is same as pushing down 

and/or pulling up a point on the 2D image surfaces. We model 

this interaction among pixels values with a locally linear 

model: 
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(a) (b) 

 

Figure 6. (a) example user interaction – moving the red contour to 

the green contour shown by moving three points, (b) 3D muscle 

shape before (red) and after (green) user interaction. 

 

 A locally linear model has been used in the past in many 

significant applications (e.g., non-linear dimensionality 

reduction [5]). It is easy to verify that this model is invariant 

to affine transformations. The linear coefficients ai,j can be 

solved efficiently by a minimum norm least squares method, 

because the linear system is underdetermined here.  
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 Once we find out the coefficients ai,j, we assume that they 

remain unchanged during user interaction. For example, 

when a user moves three points on the red contour the green 

contour is generated. This is shown in Fig. 6(a). Fig. 6(b) 

shows the positions of 3D muscle before (in red) and after (in 

green) the user interaction. Notice that the linear intra-muscle 

model has been able to preserve its smooth shape after the 

interaction. 

 Computationally, such interaction is enabled in real time, 

because, here, the software solves a sparse linear system with 

a few boundary conditions, much like the manner in which 

one solves the Laplace equation on a rectangular 2D grid 

subject to Dirichlet boundary conditions [6]. 

 

VII. MODELING INTERACTION AMONG MUSCLES 

 

In practice, modeling the dependency within each muscle is 

not enough, because the leg muscles co-exist with each other 

in an orderly way in 3D. To model the interdependencies, let 

us denotes the leg muscles by (x1, y1),…(xn, yn). Once again 

these are 2D image pairs. To capture the interrelations among 

these images, we consider the following linear convolution 

model: 
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 The convolution kernels (w) are linear coefficients for 

the model. Thus, each muscle is expressed as a linear 

combination of the rest of the muscles. The constant terms, 

��� and ��� can be chosen in such a way that the linear model 

becomes affine transformation invariant up to a constant. 

Computing the convolution kernels is straightforward in the 

frequency domain. Two of the salient advantages of the above 

model discussed below. 

 

A. Affine transformation invariance 

 

It can be shown that for the following choices of ��� and ��� 

the model becomes invariant to affine transformation: 

��� = ���
���� − 0.5���
����� − 0.5���
���
�, 

��� = ���
�
�� − 0.5���
�
��� − 0.5���
�
�
�. 

In fact, for such choices, the convolution kernels yield a 

constant image of grayscale 0.5 when operated on a constant 

image of grayscale 1.  

 

 

B. Computational efficiency during user interaction 

 

As mentioned before, one of the characteristics of the 

convolution model is lack of computational burden during 

user interaction. Suppose, ���� and �
�� are deformations of 

the ith muscles produced by any “external force” such as the 

user, then we need to make sure that the actual deformations 

���  and �
�  of the muscles follow the linear model. So, we 

need to solve the following optimization problem: 
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 Even though the minimization is convex, 

computationally it is daunting because the linear system is 

quite large and dense. Instead, we solve the optimization in 

the Fourier domain: 
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. 
 

 Notice that the objective function remains the same 

because of the orthonormality property of DFT. Note also that 

now the optimization problems are much smaller, decoupled, 

and still convex. In fact, the aforementioned minimization 

problem can be solved point-wise in the DFT domain 

independently of others. Each of these independent 

minimization problems involves only n variables, where n is 

the total number leg muscles. 

 

VIII. CONCLUSIONS 

 

An important first step has been achieved in solving the open 

problem of multi-muscle segmentation from 3D MRI data. 

The method contributes two major strides: (1) a 3D-to-2D 

mapping that allows a single 3D muscle to modeled by two 

2D images representing shape in x and y coordinates; and (2) 

the employment of previous manual segmentations to guide 

interactive semi-automated segmentation of new MRI data. 

This approach has benefits of low computational cost and of 

invariance to standard transformations.  
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