Deep Attentional S	Structured Representation Learning fo	r Visual Recognition	
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE	Krishna Kanth Nakka and Mathieu Salzmann CVLAB, EPFL	IC Computer and Communication sciences	
Goal Incorporate attention into deep structured-representation architectures	Contribution An attentional structured representation learning framework that incorporates an image-specific attention mechanism	Results Improvement across various recognition tasks: scene recognition, fine-grained categorization.	

Standard Structured Representation Architecture

Attention-Aware Structured Representation: Incorporating top-down and bottom-up information

Main Contribution:

within the **feature** aggregation process

- Attention Module
- Generates class-specific spatial attention maps from final feature map
- 2nd order pooling \simeq

81.2

Experiments: Impact of Attention into Structured Representation

89.2

Resulting Attention Maps

Attentional Structured Pooling Scheme

Pooling	Anno.	Birds	Cars	Aircrafts	Pooling	Anno.	Birds	Cars	Aircrafts	MIT-Indoor
VGG-16	\checkmark	79.9	88.4	86.9	VGG-16	_	76.0	82.8	82.3	76.6
Attention	\checkmark	77.2	90.3	85.0	Attention	_	77.0	87.4	81.4	77.2
NetBoW	\checkmark	74.4	89.1	85.6	NetBoW	_	68.9	85.2	79.9	76.1
Attentional NetBoW	\checkmark	80.5	91.2	89.3	Attentional NetBoW	_	76.9	90.6	88.3	76.6
NetVLAD	\checkmark	82.4	89.8	88.0	NetVLAD	_	80.6	89.4	86.4	79.2

Attentional NetVLAD	\checkmark	85.5	93.5
+ With bounding box in	nformation		

Attentional NetVLAD	-	84.3	92.8	88.8
+ Without bounding b	ox inform	nation		

Comparison with State of the Art

MIT-Indoor Scene Dataset

Method	Birds		
Deep FisherNet	76.5		
CBN	77.6		
NetVLAD	79.1		
H-Sparse	79.5		
B-CNN	79.7		
FV+FC	81.0		
MFAFVNet	81.1		
Ours	81.2		

Fine-Grained Datasets

Pooling	Anno.	Birds	Cars	Aircrafts
MG-CNN	\checkmark	83.0	_	86.6
B-CNN	\checkmark	85.1	-	_
PA-CNN	\checkmark	82.8	92.8	_
Mask-CNN	\checkmark	85.4	-	_
MDTP	\checkmark	_	92.6	88.4
Ours	\checkmark	85.5	93.5	89.2
KP	-	86.2	92.4	86.9
Boost-CNN	_	86.2	92.1	88.5
Imp. B-CNN	_	85.8	92.0	88.5
alpha-pooling	_	85.8	92.0	88.5
RA-CNN	_	84.1	92.5	88.2
MA-CNN	_	86.5	92.8	88.9
Ours	_	84.3	92.8	88.8

Our method is able to localize discriminative parts of birds (tail, beak), aircrafts (engine, landing gear) and cars (lights, logo).

References

1. Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: CNN architecture for weakly supervised place recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5297–5307, 2016

2. Rohit Girdhar and Deva Ramanan. Attentional pooling for action recognition. In Advances in Neural Information Processing Systems, pages 33-44, 2017