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Adversarial attack detection
Adversarial attacks[5][6] alter the image infinitesimally to fool the segmentation network. 
We detect the resulting nonsensical label map using a non-differentiable histogram of 
oriented gradients (HOG) feature distance between input and synthesized images.
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Results
We evaluate anomaly detection performance on the Road Anomaly and
Lost and Found[3] datasets. Baselines: 

Uncertainty (Ensemble)
Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. 
B. Lakshminarayanan, A. Pritzel, and C. Blundell  [NIPS 2017]

Uncertainty (Dropout)
Bayesian Segnet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
A. Kendall, V. Badrinarayanan, and R. Cipolla  [ArXiv 2015]

RBM
Real-Time Small Obstacle Detection on Highways Using Compressive RBM Road Reconstruction. 
 C. Creuso and A. Munawar  [Intelligent Vehicles Symposium 2015]
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Quantitative anomaly detection results; the reported value is the AUROC score.

New dataset: Road Anomaly 
We contribute a new dataset of unusual objects in traffic scenes, with pixel mask 
annotations.

www.epfl.ch/labs/cvlab/data/road-anomaly

Synthetic Discrepancy Training
We train the system without any prior knowledge of anomalies. We generate artificial 
discrepancies from Cityscapes[4] data by altering the semantics of selected object 
instances.
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The discrepancy network learns to detect meaningful differences while ignoring  
synthesis artifacts and variation between objects of a given class.

We synthesize a plausible image solely from the predicted semantic labels using 
pix2pixHD[1]. Anomalies, not expressed by the known classes, will differ strongly 
between input and resynthesis, and will be detected as discrepancies.

Approach
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Motivation
Standard semantic segmentation fails to capture unusual objects which fall outside 
any of the known semantic classes. We attempt to detect such anomalies and warn 
about potential dangers in a self-driving scenario.
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