

Motivation

Standard semantic segmentation fails to capture unusual objects which fall outside any of the known semantic classes. We attempt to detect such anomalies and warn about potential dangers in a self-driving scenario.

Approach

We synthesize a plausible image solely from the predicted semantic labels using pix2pixHD^[1]. Anomalies, not expressed by the known classes, will differ strongly between input and resynthesis, and will be detected as discrepancies.

(3) Discrepancy Network

Discrepancy Network

The discrepancy network learns to detect meaningful differences while ignoring synthesis artifacts and variation between objects of a given class.

Krzysztof Lis

discrepancy

predicted labels - with attack

synthesized - with attack

HOG

distance

— warning!

[6] Houdini: Fooling deep structured visual and speech recognition models with adversarial examples.

[4] The Cityscapes Dataset for Semantic Urban Scene Understanding. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele [CVPR 2016]

[5] Adversarial examples for semantic segmentation and object detection. C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille [ICCV 2017]

M. M. Cisse, Y. Adi, N. Neverova, and J. Keshet [NIPS 2017]