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The advent of inexpensive smartphones/tablets/phablets equipped with cameras has resulted in the average person
capturing cherished moments as images/videos and sharing them on the internet. However, at several locations, an
amateur photographer may be frustrated with the captured images. For example, the object of interest to the
photographer might be occluded or fenced. Currently available image de-fencing methods in the literature
are limited by non-robust fence detection and can handle only static occluded scenes whose video is captured
by constrained camera motion. In this work, we propose an algorithm to obtain a de-fenced image using a
few frames from a video of the occluded static or dynamic scene. We also present a new fenced image database
captured under challenging scenarios such as clutter, poor lighting, viewpoint distortion, etc. Initially, we propose
a supervised learning-based approach to detect fence pixels and validate its performance with qualitative as well as
quantitative results. We rely on the idea that freehand panning of the fenced scene is likely to render visible
hidden pixels of the reference frame in other frames of the captured video. Our approach necessitates the solution
of three problems: (i) detection of spatial locations of fences/occlusions in the frames of the video, (ii) estimation
of relative motion between the observations, and (iii) data fusion to fill in occluded pixels in the reference image.
We assume the de-fenced image as a Markov random field and obtain its maximum a posteriori estimate by
solving the corresponding inverse problem. Several experiments on synthetic and real-world data demonstrate
the effectiveness of the proposed approach. © 2016 Optical Society of America

OCIS codes: (100.3020) Image reconstruction-restoration; (100.2980) Image enhancement; (100.3190) Inverse problems;

(100.2960) Image analysis; (100.0100) Image processing.
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1. INTRODUCTION

Tourists and amateur photographers capture their cherished
moments at historical places or monuments which they visit
during their travel. The availability of low-cost smartphones/
phablets with sophisticated cameras has led to an increase in
the images or videos captured and shared across the internet.
Despite the advances in the technology of such devices, some-
times the amateur photographer is frustrated by unwanted
elements in the scene. One such hindrance is the presence of
barricades or fences occluding the object which the photogra-
pher wishes to capture. In recent times, security concerns have
resulted in places of tourist interest being barricaded for pro-
tection. Fences have become common, restricting access to the
public and affecting the aesthetic experience of the tourist
who wants to preserve his/her memories for posterity using
images/videos. Sometimes fences are essential to protect

the spectator from grave danger such as wild animals in zoos.
However, one would prefer to enhance the aesthetic appeal of
the captured images of these animals by removing interfering
fences/barricades.

The problem of image de-fencing [1–4] is basically removal
of fences/barricades from an image affected by such occlusions.
In this work, we propose a supervised learning-based approach
to detect fences/occlusions and an optimization framework to
obtain a de-fenced image using a few frames from the video of
the occluded scene. The basic idea is to capture a short video
clip by moving the camera relative to the occluded scene and
use a few frames from it to restore data hidden by the fence in
the reference image. A sample frame from a captured video is
shown in Fig. 1(a), wherein a fence is occluding parts of a tiger.
We also show the third frame from the captured video in
Fig. 1(b). As shown with the aid of arrows, we observe that
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relative motion between these frames uncovers data that is
hidden behind the fence pixels in Fig. 1(a). This fact can be
exploited to perform de-fencing of the degraded reference
frame in Fig. 1(a). In Fig. 1(c), we show the output of the pro-
posed algorithm wherein occlusions due to fence pixels have
been successfully removed.

We observe that although the problem appears simple, it
becomes more challenging when the scene is dynamic and
three-dimensional in nature. Our approach for image de-
fencing necessitates the solution of three sub-problems, which
we identify as (1) automatic detection of spatial locations of
fences or occlusions in the frames of the video, (2) estimation
of relative motion between the frames, and (3) data fusion to fill
in occluded pixels in the reference image with uncovered scene
data in additional frames. This is summarized in Fig. 2.

Fence detection is the first task that is addressed in the pro-
posed algorithm. Recently, there has been considerable progress
in the area of image/depth inpainting [5–17], whereby most
works assume that the spatial location of pixels to be filled
in are known a priori. It is to be noted that, for the problem
at hand, we cannot make such an assumption since the number
of fence pixels are too many and it is very tedious to mark them
by hand. In our earlier works [3,4], we used the image-matting
technique of [18] to extract the foreground fence pixels.
However, the drawback of [18] is that it involves significant user
interaction wherein some pixels of both the foreground (fence)
and background are explicitly marked by scribbling. Therefore,
here we propose a supervised learning approach to automati-
cally identify fences. In addition, we propose a database of

200 fenced images captured under several challenging scenarios
such as clutter, illumination, perspective distortions, etc. We
validate the proposed fence-detection algorithm with qualita-
tive and quantitative results.

After the fences/occlusions have been identified, we need to
fill in the missing information in order to de-fence the reference
frame. A naive idea is to simply inpaint the fenced reference
image by a standard image-completion technique. However,
such an approach would approximate missing information by
propagating neighboring pixel intensities respecting edges/
discontinuities in the frame which may fail to accurately recon-
struct finely textured regions of the background hidden behind
fence occlusions. Importantly, by using inpainting techniques,
we do not exploit the important fact that relative motion be-
tween the camera and scene can cause additional frames to con-
tain data that is missing in one frame. Similar observations were
made by the authors of [1], wherein a video of the fence scene
was captured while comparing their work to that of [2], which
resorted to image inpainting using the method in [7]. However,
in order to exploit the availability of additional data, we need to
estimate motion between the frames accurately.

In our previous work [3,4], we assumed that the frames of
the input video obtained by panning the occluded scene are
shifted globally. Hence, we used the affine scale-invariant fea-
ture transform (SIFT) [19] image descriptors to match corre-
sponding points in the frames obtained from the captured
video. By avoiding false matches with a little user interaction,
it is possible to estimate the global pixel motion accurately. The
above assumption restricts our algorithms in [3,4] to videos

Fig. 1. Image de-fencing: (a), (b) First and third frames from the captured video obtained by moving a camera relative to the occluded scene.
(c) De-fenced image corresponding to (a) obtained using the proposed algorithm. See Visualization 1.

Fig. 2. Schematic for image de-fencing.
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containing global motion only, which is not general enough for
real-world data wherein scene elements can be dynamic also.
Hence, in this work, we used a recently proposed algorithm
for estimating optical flow [20].

The final task in our method is fusion of data from addi-
tional frames to de-fence the reference image. For this purpose,
we use a degradation model to describe the formation of images
affected by occlusions due to fences. The de-fenced image is
modeled as a Markov random field (MRF). The task of image
de-fencing is posed as an inverse problem.We use the loopy belief
propagation technique [21] to optimize an appropriately formu-
lated objective function. Our approach is more accurate thanmere
image inpainting since we use data from neighboring frames to
derive the maximum a posteriori estimate of the de-fenced image.

A video de-fencing algorithm is proposed in [22]. However,
the method of [22] restricts the motion of the camera as affine
and users need training to capture the video in an appropriate
manner. A major drawback of [22] is that it is limited to
defencing only static background scenes. This is because the
algorithm of [22] failed to distinguish between the parallax
caused by fences as well as dynamic scene elements in the
background. We also note that the authors of [22] do not pro-
vide a comprehensive evaluation of their algorithm for fence
localization/detection.

In a very recent work, an algorithm is proposed in [23]
which is capable of removing degradations such as occluding
fences, reflections, and raindrops from captured images using
a short video sequence. However, the method of [23] imposes
unrealistic constraints on the relative motion between the cam-
era and the scene, allowing only approximate horizontal move-
ment without any rotation, similar to capturing a panaroma.
Further, the scene is assumed to be roughly static, which is
another major drawback. Another limitation of [23] is that
the authors do not provide a comprehensive evaluation of
their algorithm for fence detection. We address the significant
limitations of both [22] and [23] in this work.

Although there have been previous attempts at removing
fences from images [1–4,22,23] the novelty of our method
is the use of a learning-based approach for fence detection
and formulation of an optimization-based framework to fuse
data from multiple frames of the input video in order to fill
in fence pixels. Importantly, we provide qualitative and quan-
titative comparison results with an existing fence/lattice detec-
tion algorithm [24]. Unlike those in [22,23], the proposed
method can handle reasonably arbitrary camera motions such
as rotation, zooming, etc., during video capture. Moreover, we
can de-fence scenes containing static/dynamic objects. A sig-
nificant advantage of the proposed approach is that we can
de-fence a reference image using only 2 additional frames
on average from the captured video in contrast to the 14 frames
needed by the method of [22] and the 4 frames used in [23].
We demonstrate the superiority of the proposed algorithm over
the state-of-the-art techniques through experiments using both
synthetic and real-world data.

This paper is organized as follows. We review methods in
the literature for fence detection, inpainting, and image
de-fencing in Section 2. In Section 3, we outline details of the
proposed methodology, including fence detection and the

optimization framework for data fusion. Experimental results
and comparisons with the state-of-the-art algorithms are pre-
sented in Section 4. Finally, conclusions are given in Section 5.

2. RELATED WORKS

A. Fence Detection

There has been significant research in the field of regular or
near-regular pattern detection [1,24,25–27]. Initially, the au-
thors in [25] formulated the computational model for periodic
pattern perception based on the theory of frieze and wallpaper
groups. Later, the work of [26] posed lattice discovery as a
higher-order correspondence problem and discovered patterns
with significant texel variations. An effective fence-detection al-
gorithm is proposed in [24]. The authors in [24] detect regular
textures in three phases using mean shift belief propagation
and regularized thin-plate spline warping. The work in [22]
addressed the video de-fencing problem wherein a soft fence-
detection method is proposed by using visual parallax as the cue
to distinguishing fences from the unoccluded pixels. Recently,
the authors in [23] proposed a computational approach
wherein they have recovered the occluding foreground along
with the restored background using visual parallax.

B. Image Completion/Inpainting

Diffusion-based image inpainting techniques [5,28,29] use
smoothness priors to propagate information from known
regions to the unknown region. These algorithms work satis-
factorily if the region with missing data is small in size and low-
textured in nature. On the contrary, exemplar-based techniques
[7,9,30,31] fill in the occluded regions using similar patches
from other locations in the image. Methods belonging to this
category possess the advantage of being able to recreate texture
missing in large regions of the image.

Criminisi et al. [7] combined the advantages of both struc-
ture propagation and texture synthesis for filling in large
regions. The work of Patwardhan et al. [13] addressed video
inpainting under constrained camera motion. The authors of
[32] approached the image-inpainting problem using a varia-
tional framework employing split Bregman technique. He et al.
[33] added another novel aspect to exemplar-based inpainting
techniques wherein statistics of patch offsets have been ex-
ploited. Recently, Ruzic et al. [12] proposed a context-aware
inpainting algorithm using a normalized histogram of Gabor
responses as the contextual descriptors. Ebdelli et al. [34] pro-
posed a video inpainting algorithm by considering additional
frames to inpaint a reference frame. The method in [35] uses
blurred images captured with three different aperture settings to
remove thin occluders from images.

C. Image/Video De-fencing

Liu et al. in [2] first addressed the image de-fencing problem via
inpainting of the occluding foreground pixels. In their method,
the fence mask is detected using a regularity-discovery algo-
rithm proposed in [26]. The filling in of the occluded pixels is
attempted by using the algorithm of [7]. Basically, [2] treats the
de-fencing problem as an inpainting problem. Subsequently,
the authors in [1] extended the algorithm in [2] using
mutliple images from a captured video, obtaining significant
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improvement in performance due to availability of hidden
information in additional frames. The work in [1] proposed a
learning-based algorithm using support vector machine (SVM)
to improve the accuracy of lattice detection and segmentation.
The work of [22,23] also addressed the problem of video
de-fencing but was restricted to handling only roughly static
occluded scenes.

In a previous work [3], we proposed an improved multi-frame
de-fencing algorithm using loopy belief propagation. However,
the work in [3] assumed that motion between the frames was
global and used the technique of [18] for fence detection.

3. PROPOSED METHODOLOGY

A. Degradation Model

The image de-fencing problem can be modeled as

Omym � yobsm � Om�Wmx� nm�; (1)

where Om is the binary fence mask corresponding to the mth
frame, ym represents the mth frame of the video, yobsm is the mth
frame wherein pixels occluded by fences have been excluded
using Om, Wm is the warp matrix, x is the de-fenced image,
and nm is the noise assumed as Gaussian.

As described earlier in Section 1, the problem of image de-
fencing was divided into three sub-problems and the overall
workflow of the proposed approach is shown in Fig. 2.

B. Fence Detection

The first task is to detect fence pixels corresponding to each
observation ym in Eq. (1). The fence masks, Om, in Eq. (1) are
used to crop out visible information in the observations. We
experimented with several ideas to address this problem and
report the results here.

1. Image Segmentation

The simplest approach is to treat fence detection as an image-
segmentation problem. We employ the graph-cut segmentation
algorithm [36,37,38,39] on the images shown in Figs. 3(a) and
3(f ) using the MATLAB wrapper given in [36]. The corre-
sponding segmentation results are shown in Figs. 3(b) and
3(g), respectively. This approach works for simple images with

homogeneous backgrounds as in Fig. 3(a). However, for more
complex real-world images such as the one shown in Fig. 3(f ),
the segmentation algorithms in [36] do not work well, as shown
in Fig. 3(g).

2. Stroke Width Transform

Interestingly, we observe a similarity between the problem of
detecting text in natural images and the task of fence detection.
Signboards, advertisement billboards, license plates, etc., gener-
ally contain text of roughly constant width and uniform color
inside the letter strokes. This property has been exploited for
effective text detection in natural images using stroke width
transform (SWT) [40]. We employed SWT for fence detection
in Figs. 3(a) and 3(f ) and observed that the algorithm works
to a reasonable extent for scenes with simple homogeneous
backgrounds as in Fig. 3(a). However, it fails for many other
real-world images with complex backgrounds such as the
fenced image in Fig. 3(f ). The corresponding result is shown
in Fig. 3(h).

3. Gabor Filtering

We also observe that fences commonly seen outdoors, such as
in public places, are generally symmetric in shape and exhibit
strong edges along certain orientations. To exploit the direc-
tional nature of the fences, we employed directional filters
existing in the literature such as Gabor filters [41]. In the 2D
spatial domain, the Gabor function is a complex exponential
modulated by a Gaussian,

gθ;σ;λ;ψ ;γ�x; y� � exp

�
−
x 02 � γ2y 02

2σ2

�
exp

�
i
�
2π

x 0

λ
� ψ

��
;

(2)

where x 0 � x cos θ� y sin θ, y 0 � −x sin θ� y cos θ, x and
y denote the pixel positions, θ represents the orientation of the
Gabor filter, σ denotes the standard deviation of the Gaussian
function, λ is the wavelength, ψ is the phase offset, and γ rep-
resents the aspect ratio. Here, θ can be varied between 0° and
360° based on the fence orientation. We applied Gabor filters
to the observations shown in Figs. 3(a) and 3(f ). We use two
Gabor filters with orientation angles π∕4, −π∕4 deg and other
parameters fixed as λ � 4, ψ � 0, γ � 0.5, and σ � 4.

Fig. 3. (a), (f ) Two observations chosen from two videos of fenced scenes. (b), (g) Segmentation results obtained using [36] for (a) and (f ),
respectively. (c), (h) Detected fence pixels using SWT [40]. (d), (i) Estimated fence masks using Gabor filter [41] responses obtained for (a) and (f ),
respectively. (e), (j) Fence masks obtained for observations (a) and (f ) using the proposed algorithm.
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As shown in Fig. 3(d), these filters work well only for the case of
homogeneous backgrounds. However, as depicted in Fig. 3(i),
Gabor filters also respond to texture/strong edges in the back-
ground apart from oriented fence texels.

4. Image Matting

If one considers the fence as the foreground and the non-oc-
cluded regions in a frame as the background, then we can lev-
erage on the progress made in the area of image matting [18,42]
for fence detection. The algorithm in [18] requires a human to
mark some foreground and background pixels by means of
scribbling, which is used as input to extract an alpha matte. As
an illustration, we show the scribbles put by the user on an
observation in Fig. 4(a). This scribbled observation is fed as
input to the technique in [18], whose output is a gray-scale
intensity image representing the alpha matte. We threshold this
image to obtain a binary mask that denotes the locations of
fence pixels as shown in Fig. 4(b). This approach results in
fairly accurate fence masks. However, the major drawback of
[18] is that it involves significant user interaction and hence
is impractical for use in real-world scenarios.

5. Proposed Supervised-Learning-Based Approach

Inmany real-world images, fence texels are regular in shape (e.g.,
rhombic) and have joints at their vertices. To exploit the struc-
tural property of such fences, we propose a learning-based
approach to detect joint positions in fenced images which are
subsequently connected by straight edges. It is amply demon-
strated in the literature that histogram of gradients (HoG)
[43] features have been successful in many detection and object
classification problems.HoGdescriptors have several key advan-
tages such as robustness to (a) small changes in image contour
locations and directions and (b) significant changes in image il-
lumination and color, remaining as discriminative and separable
as possible. Hence, in this work, we extracted HoG features [43]
which are used as input to the proposed supervised learning
framework. For example, a fenced image taken from a video
is shown in Fig. 5(a) and the HoG features corresponding to
one fence texel are depicted in Fig. 5(b). Note that we consider
a small image patch centered around a joint as the fence texel.
The inverseHoGcorresponding to Fig. 5(b) obtained using [44]
is shown in Fig. 5(c). We observe that HoG features shown in
Fig. 5(b) resemble the fence texel shape in the original color im-
age of Fig. 5(a). This characteristic property of HoG features is

the reason for its highly discriminative nature, which proves
useful for identifying fence texels in occluded images.

Supervised learning algorithms critically depend upon fea-
tures drawn from images. In a recent work [44], it has been
cogently argued that output of object-recognition algorithms
can be understood and their performance significantly im-
proved by investigating the role of HoG features being ex-
tracted from the input images. Therefore, to comprehend why
the proposed HoG-based approach should work well in
detecting fences in real-world images under challenging scenar-
ios such as clutter, low light, and poor contrast, we show in
Fig. 6 positive and negative samples for fences, corresponding
HoG features, as well as inverse HoG visualizations. We con-
sider image patches of size 30 × 30 pixels centered around the
joints of fences as positive fence texels. Sample fence and non-
fence texels are shown in first column of Figs. 6(a) and 6(b).
The corresponding HoG features and visualization of the in-
verse HoG obtained using [44] are shown in the second
and third columns, respectively, of Fig. 6. We notice that visu-
alization of inverse HoG reveals the details hidden in the top
portion of the fence texel shown in the last row of Fig. 6(a),
which is difficult even for humans to discern.

Using a subset of 200 fenced images in the proposed dataset,
we manually cropped 30 × 30 pixel-sized sub-images corre-
sponding to fence joints and non-joints to obtain positive

Fig. 4. Fence detection using [18]: (a) Input frame with scribbles
marked by a user. (b) Binary fence mask generated by thresholding the
gray-scale alpha map obtained using [18].

Fig. 5. Visualization of HoG features: (a) Color image with fences.
(b) HoG descriptors of one fence texel containing a single joint.
(c) Inverse HoG visualization obtained using [44] corresponding to (b).

Fig. 6. HoG features and inverse HoG visualization obtained using
[44]: (a) First, second, and third columns are sample fence texels, HoG
features, and inverse HoG, respectively, obtained using [44]. (b) First,
second, and third columns depict sample non-fence texels, HoG
features, and inverse HoG, respectively, obtained using [44].
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and negative fence texels. The base dataset for training in the
proposed supervised-learning algorithm consists of 2000 posi-
tive examples of fences as well as 6000 negative samples of
non-fence texels. Initially, all the images in the dataset are
pre-processed by histogram equalization to reduce the effects
of illumination changes. Each training image is divided into
non-overlapping cells of size 4 × 4 pixels wherein image gra-
dients are computed in terms ofmagnitude as well as orientation.
At every pixel in the cell, the gradient orientation is quantized
into one of the nine bins, weighted based on its magnitude. The
orientation bins are evenly spaced over 0°–180°, with each bin of
size 20°. For each cell, we compute the histogram of nine
orientations to form a feature vector of size 9. A set of four cells
is clustered together to form a single block. Each block is
thus represented by a feature vector of length 4 × 9with an over-
lap of two cells between neighboring ones. Finally, all the
L2-normalized feature vectors from the blocks are concatenated
to obtain a single large feature vector of size 6 × 6 × 4 × 9
corresponding to a single fence/non-fence texel of size 30 × 30
pixels.

Next, we train an SVM with the extracted HoG features to
detect whether an input image patch contains a joint of the
fence or not. We choose an RBF kernel given as k�xi; xj� �
exp�γ‖xi − xj‖2�, where the parameters γ and misclassification
penalty C are found by iterating on a logarithmic grid and
optimally selected based on the error rate estimated on a five-
fold cross validation [45].

During the test phase, a sliding window is used to densely
scan the test image from left to right and top to bottom with a
stride of five pixels along both directions. For each detector
window of size 30 × 30 pixels in a test image, HoG features
are extracted and fed to the trained SVM classifier to detect
the presence or absence of a joint of the fence in this sub-image.
Now, to connect the detected joints, we calculate inter-joint
distances along the horizontal as well as vertical directions.
The median of those inter-joint distances is assumed as the di-
mension of the individual texel. For every detected joint, we
find candidates for neighboring joints within a region of half
the inter-joint distances upto a reasonable threshold. The false
positives from the detected joints are automatically eliminated
as those will be located outside the considered search space.
Finally, we connect the valid detected joints using straight edges
to obtain the fence mask denoted by Om in Eq. (1). Note that
the proposed approach for fence detection is reasonably robust
to perspective distortions and magnification in the fenced im-
ages since we are only detecting fence joints rather than the
entire rhombic shape/pattern.

C. Motion Estimation

The basic idea behind our method is that occluded image data in
the reference frame is uncovered in other frames of the captured
video. Relative shifts among the frames have to be estimated in
the degradation model of Eq. (1) to effect the image operations
corresponding toWm. In our previous works [3,4], we assumed
that the background (non-fence) pixels in the frames are shifted
with respect to each other by a globally fixed amount.

However, in real-world videos, the scene can consist of ob-
jects which are dynamic. To employ the proposed algorithm for

such dynamic videos, we need accurate local pixel motion
among the frames. Recently, significant advances have been
made in estimating dense optical flow in a robust manner
[20,46,47–49]. Brox and Malik [20] proposed an optical flow-
estimation technique, wherein descriptor matching is inte-
grated in a variational framework. We use the algorithm of
[20] in this work. The objective function formulated in [20] is

E�f� � E color�f� � γE gradient�f� � αE smooth�f�
� βEmatch�f ; f1� � Edesc�f1�; (3)

where the first term E color encodes the common assumption
that corresponding points should have same color. The second
term Egradient enforces the gradient constraint and the third
term E smooth adds the regularization constraint; Ematch and Edesc

integrate the point correspondences from descriptor matching
and matched descriptors, respectively. The symbols α, β, and γ
are tuning parameters which can be determined empirically.
Optical flow at points is denoted by f≔�u; v�T, and f1 repre-
sents correspondence vectors obtained by descriptor matching
at some pixels. In [20], Eq. (3) is expanded as follows:

E�f� �
Z
Ω
ψ�jy2�Θ� f�Θ�� − y1�Θ�j2�dΘ

� γ

Z
Ω
ψ�j∇y2�Θ� f�Θ�� − ∇y1�Θ�j2�dΘ

� α

Z
Ω
ψ�j∇u�Θ�j2 � j∇v�Θ�j2�dΘ

� β

Z
δ�Θ�ρ�Θ�ψ�jf�Θ� − f1�Θ�j2�dΘ

�
Z

δ�Θ��js2�Θ� f1�Θ�� − s1�Θ�j2�dΘ; (4)

where y1, y2:�Ω ∈ R2� → Rd are two observations to be
aligned, d is number of channels, and the function ψ�s2� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � ε2

p
, ε � 0.001 is used to deal with occlusions and other

deviations of the matching criterion. Variable Θ≔�x; y�T de-
notes a point in the image domain Ω and s1, s2 denote the
sparse fields of descriptor feature vectors in frames 1 and 2,
respectively.

The delta function δ�Θ� indicates if a descriptor match is
available in location Θ and ρ�Θ� denotes confidence of the
match. Descriptor matches are obtained by matching densely
sampled HoG features in the two images y1, y2. In this work,
we estimate the optical flow by minimizing the energy function
in Eq. (4) using the algorithm proposed in [20]. When the op-
tical flow for frames extracted from a video of a fenced scene are
estimated by [20], we observe erroneous values around the
fenced or occluded pixels. To avoid these errors, we blur only
the fences in the observations prior to computing optical flow
using [20]. Depending on the thickness of the fences in the
input frames, we use a Gaussian kernel with standard deviation
�σ� varying from 1 to 2. In Figs. 7(a) and 7(b), we show two
frames from a video depicting persons walking in opposite
directions. In Figs. 7(c) and 7(d), respectively, we show the
estimated optical flow before and after blurring the fences in the
observations given in Figs. 7(a) and 7(b). We observe a signifi-
cant improvement in the estimated optical flow [Fig. 7(d)] after
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the fences have been blurred using a Gaussian kernel, σ � 2,
prior to using [20]. In Fig. 7(e), we show the color-coding
scheme employed in Figs. 7(c) and 7(d), wherein flow vector
direction is coded by hue and length by saturation. To depict
the accuracy of the estimated optical flow shown in Fig. 7(d),
we use it to obtain the residual error map between the reference
frame in Fig. 7(a) and the backwarped frame of Fig. 7(b) as
Fig. 7(f ). The error map in Fig. 7(f ) has a root mean square
error (RMSE) of 0.018 with only minor artifacts at the con-
tours of bodies of the two individuals in the scene.

D. Optimization Using Loopy Belief Propagation

Once relative pixel shifts between the frames of the captured
video are estimated as just described, we need to fuse image
data in order to fill in pixels in the reference image that are
occluded by fences. In computer vision, contextual constraints
are widely used to solve inverse problems. Such constraints are
modeled by well-known graphical models, e.g., Markov ran-
dom fields. In this work, we also propose to model the de-
fenced image as a Markov random field. We formulate an op-
timization framework for obtaining its maximum a posteriori
estimate as

x̂ � arg min
x

XK
m�1

‖yobsm −OmWmx‖2 � λ
X
c∈C

Vc�x�; (5)

where λ is the regularization parameter, K denotes the number
of frames used, c is a clique, and C is the set of all possible
cliques. The joint pdf of the MRF can be specified as
Gibbsian by the Hammersley–Clifford theorem [51],

P�x� � 1

Z
exp�−Vc�x��; (6)

where Z is the partition function and Vc�x� is the clique
potential function. We choose a robust form for the clique
potential function as Vc�x� � jxi;j − xi;j�1j � jxi;j − xi;j−1j�
jxi;j − xi−1;jj � jxi;j − xi�1;jj, considering a first-order MRF
neighborhood.

Loopy belief propagation (LBP) [21] is a popular message-
passing algorithm for inference problems on graphical models.
Let P be the set of pixels in the de-fenced image x and L be a
finite set of labels. The labels correspond to quantities that we
want to estimate at each pixel, such as intensities. A labeling
f assigns a label f p ∈ L to each pixel p ∈ P, where L �
f0;…; 255g and P � f0;MN − 1g for an M × N pixel-sized
grid. We assume that the labels should vary slowly almost
everywhere but may change dramatically at discontinuities.
The quality of a labeling is given by an energy function,

E�f � �
X
p∈P

Dp�f p� �
X

�p;q�∈N
W �f p; f q�; (7)

whereN represents the first-order neighborhood. The first term
in Eq. (7) is the data cost defined asDp�f p� � �f p − y

obs
m �p��2 if

p is a visible or non-fence pixel; otherwise, Dp�f p� � 0. The
term W �f p; f q� measures the cost of assigning labels f p and
f q to two neighboring pixels, and is normally referred to as
the discontinuity cost. In this work, we assume W �f p;f q��
Vc�x�� jxi;j −xi;j�1j�jxi;j −xi;j−1j�jxi;j −xi−1;jj�jxi;j −xi�1;jj
for a first-order MRF neighborhood.

Loopy belief propagation is based on the principle of mes-
sage passing. Each message is a vector of dimension L. The first
step in LBP is message updating, which is followed by belief
computation. Message updating is done repeatedly either for
T iterations or until each node agrees with the opinion from
its neighboring nodes:

mt
pq�f q� � min

f p

�Dp�f p� �W �f p; f q� �
X

s∈N �p�−q
mt−1

sp �f p��;

(8)

where N �p� − q denotes the neighbors of p other than q. After
T iterations, a belief vector is computed for each node,

bq�f q� � Dq�f q� �
X

p∈N �q�
mT

pq�f q�: (9)

Finally, the label f �
q that minimizes bq�f q� individually at

each node is selected.

E. Algorithm

Algorithm 1. Image de-fencing algorithm

1. Input: Om, yobsm , λ, L
2. Initialize all messages mpq�f q� to zero
3. while t ≤ T do
4. for f q � 1: L do
5. mt

pq�f q� � minf p
�Dp�f p� �W �f p; f q�

�P
s∈N �p�−qmt−1

sp �f p��
6. t ← t � 1
7. for f q � 1: L do
8. bq�f q� � Dq�f q� �

P
p∈N �q�mT

pq�f q�
9. for q � 0: MN − 1 do
10. x�q� � arg minf q

bq�f q�

Fig. 7. (a), (b) Frames from a real-world video. (c), (d) Optical flow
between (a) and (b) estimated without and with blurring of fences in
(a) and (b) before using [20]. (e) Optical flow color coding [50].
(f ) Residual error map between (a) the frames and (b) backwarped
frame.
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4. EXPERIMENTAL RESULTS

In this section, initially we report both qualitative and quanti-
tative results of our proposed fence-detection algorithm on vari-
ous datasets. Subsequently, we report the de-fencing results
obtained using our optimization framework on synthetic and
real-world videos. To validate our proposed approach, we com-
pare with the state-of-the-art inpainting as well as de-fencing
techniques. We used only three frames from each captured
video for all the image de-fencing results reported here using
the proposed algorithm. The de-fencing procedure is carried
out individually in each color channel and the results combined
to generate the de-fenced RGB color image. For all our experi-
ments, we fixed λ value as 0.0005 in Eq. (4). We ran all our
experiments on a 3.4 GHz Intel Core i7 processor with 8 GB of
RAM. The execution time of our non-optimized MATLAB
implementation is of the order of a few tens of seconds.

A. Validation of Proposed Algorithm for Fence
Detection

For evaluating our supervised learning-based algorithm we used
two different datasets. First, we collected a dataset consisting of
200 real-world images under diverse scenarios and complex
backgrounds using a mobile phone camera. These real-world
images and videos were captured under several challenging con-
ditions such as poor illumination, clutter, perspective distortion
due to non-frontal camera viewpoint, and unconstrained
free-hand movement.

Secondly, we used a subset of images from the Penn State
University near-regular texture (PSU NRT) database [52]. The
images in the NRT database are divided into three categories.
Dataset 1 �D1� contains 67 images with opaque texels and ap-
pearance variations of the repeating elements due to different
viewpoint and lighting conditions. Dataset 2 �D2� of the NRT
database contains 73 images with see-through or wiry struc-
tures. Dataset 3 �D3� consists of 121 images of city buildings
containing multiple repeating patterns with perspective distor-
tion. However, only a subset of 40 images from D2 are of fences.
We report qualitative and quantitative results of the proposed ma-
chine-learning approach for detection of fences in these 40 images
of the D2 dataset in the NRT database. The images in the NRT
database are provided with corresponding ground truth. For our
proposed database of fenced images, we used the matting tech-
nique in [18] to generate the ground truth fences.

As discussed in Section 3, an SVM classifier was trained us-
ing HoG features extracted from a dataset of 8000 (2000 pos-
itive fence texels and 6000 non-fence texels) sub-images of
resolution 30 × 30 pixels obtained only from a subset of images
in the proposed fenced image database. We compare the results
of [24] with the output of our algorithm on both the PSUNRT
dataset [52] and the proposed fenced-image dataset. Initially, in
Fig. 8, we show qualitative comparison results for some images
from the PSU NRT dataset [52]. For the images shown in the
first and third columns of the first row of Fig. 8, we show that
the method of [24] is only partially successful in estimating
fence pixels, whereas in the second and the fourth columns,
we observe that the proposed method is able to extract the fen-
ces completely. However, for the images shown in the first and
third columns of the second and third rows of Fig. 8, we see

that the method of [24] completely failed to detect fence pixels,
whereas in the second and the fourth columns, we observe that
the proposed method is able to extract the fences accurately
over most of the image regions. For the image shown in second
row, second column of Fig. 8 we note that, due to the fence
being occluded by hands and hair, the proposed algorithm
could not properly detect fence pixels at the bottom of the
image. We also acknowledge that there are a few minor mis-
detections of fence pixels in the images shown in the second
row, fourth column and third row, second column of Fig. 8.
Interestingly, we observe that our method performs successfully
even when the fences are deformed in shape due to non-fronto-
parallel viewpoint of the camera as shown in the image in the
first row and fourth column of Fig. 8. This is because the joint
positions are not highly sensitive to perspective distortions and
they remain stable in shape even when the camera viewpoint is
changed.

We found that on 70 images of the proposed fenced image
dataset, the algorithm in [24] detected fences only partially. We
show some sample results to illustrate this fact in the first row of
Fig. 9. For the rest of the 130 images in our dataset, the method
of [24] completely failed to detect any fence texels. Some of these
challenging images are shown in rows 2–5 of Fig. 9. For each pair
of images shown, the left picture is the result of Park et al. [24]
and the right image shows the result of the proposed algorithm.
We acknowledge that, due to poor illumination and low con-
trast, our algorithm failed to detect fences at some portions
of the images given in the second row, fourth column; third
row, fourth column; and fifth row, second column of Fig. 9.

For the sake of comparison, we also trained an SVM clas-
sifier by extracting Gabor features. Gabor features are extracted
by convolving each image in the training data set (which was
identical to the database from which we extracted HoG
features) with 40 Gabor kernels. Subsequently, we trained

Fig. 8. Sample fence detection results on PSU NRT data set [52]
(this figure is best seen in color in the electronic version). Row 1 shows
sample results where algorithm in [24] partially detected the fence
pixels while the proposed method succeeds in detecting the entire
fence. Rows 2 and 3 show sample results where the method of
Park et al. [24] fails totally while ours succeeds. For each pair of images
shown, the left image is the result of [24] and the right image is the
result of the proposed HoG + SVM method.
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an SVM classifier which gave moderate performance compared
to [24] and the proposed HoG + SVM technique as reported in
Table 1.

We quantitatively compare the proposed approach by cal-
culating different performance metrics such as precision, recall,
and F-measure on the two datasets. Precision is the percentage
of detected texels that are correct,

Precision � TP

TP� FP
; (10)

and recall is the percentage of correct texels that are detected,

Recall � TP

TP� FN
; (11)

where TP, FP, and FN denote true positive, false positive, and
false negative values, respectively. And finally, a combined mea-
sure that assesses the precision–recall tradeoff is the F-measure,
which is the weighted harmonic mean specified as

F -measure � 2 × precision × recall
precision� recall

: (12)

The performance of various techniques on the PSU NRT
[52] dataset and the proposed fenced-image dataset has
been reported in Table 1. For the PSU NRT dataset [52], the
F-measures obtained for [24] and the Gabor + SVM approaches
are 0.62 and 0.76, respectively. On this dataset, the F-measure
for the proposed method (HoG + SVM) is 0.93. For the pro-
posed fenced-image dataset, the F-measures obtained for [24]
and the Gabor + SVM approaches are 0.41 and 0.79, respec-
tively. On this dataset, the F-measure for the proposed method
(HoG + SVM) is 0.96.

B. Image De-fencing

Initially, we reported results of the proposed method for image
de-fencing on synthetic data. Here, we assumed that the loca-
tions of fence pixels were known and that the fence was static.
Only the background is shifted with respect to the static fence
in the different observations. We assumed that the shift of the
background pixels was global and known a priori. We generated
synthetically four frames by shifting the original image with
displacements of �−8; −8�, (6, 6), and (15, 15) pixels. This
is evident in Fig. 10(a), wherein the optical flow vectors
between synthetically generated first and fourth observations
are overlaid on the first frame. The thickness of the fence is
chosen as 15 pixels. The de-fenced images obtained using
state-of-the-art image inpainting algorithms [7] and [32] are
shown in Figs. 10(b) and 10(c), respectively. Herein, we
observe that the fence patterns are still present in the inpainted
images. To analyze the overall performance of the proposed
approach, we evaluate the quality of the obtained de-fenced
results by varying the number of frames used and thereby
relative shifts between the frames. Initially, we experimented
with one frame only and the obtained de-fenced result with
peak signal to noise ratio (PSNR) of 12.84 dB is shown in
Fig. 10(d). In Fig. 10(e), we show the de-fenced image having
PSNR of 18.34 dB using two input frames with relative shift of
eight pixels between them. Subsequently, we used three frames
with the relative shifts between them being chosen as 14 pixels.
The corresponding de-fenced image with PSNR of 34.32 dB is
shown in Fig. 10(f ). Finally, we ran the proposed method with
four frames which are relatively shifted by 24 pixels. We show
the obtained de-fenced image, which has a PSNR of 38 dB, in
Fig. 10(g). Note that there are hardly any artifacts and the fence
has been successfully filled in. We can conclude that the quality
of the defenced image in terms of PSNR significantly improves
with increase in the number of input frames. The correspond-
ing plot is depicted in Fig. 10(i).

Fig. 9. Sample fence detection results on the proposed fenced image
data set (this figure is best seen in color in the electronic version). Row
1 shows sample results where the algorithm in [24] partially detected
the fence pixels while proposed method succeeds in detecting the com-
plete fence. Rows 2–5 show sample results where the method of [24]
fails completely while ours succeeds. For each pair of images shown,
the left image is the result of [24] and the right image is the result of
the proposed HoG + SVM method.

Table 1. Quantitative Evaluation of Fence Detection

PSU NRT Database [52] Our Database

Method Precision Recall F-measure Precision Recall F-measure

Park et al. [24] 0.95 0.46 0.62 0.94 0.26 0.41
Gabor filter + SVM 0.86 0.68 0.76 0.78 0.80 0.79
Proposed method (HoG + SVM) 0.95 0.92 0.93 0.96 0.95 0.96

Research Article Vol. 33, No. 10 / October 2016 / Journal of the Optical Society of America A 1925



The quantitative metrices such as RMSE, PSNR, and struc-
tural similarity index (SSIM) are given in Table 2. We observe
that the PSNR value of the de-fenced image estimated using the
proposed algorithm with four input frames is almost twice the
PSNR of the inpainted images [Figs. 10(b) and 10(c)]. The de-
fenced image obtained using our algorithm is almost identical
to the original image. In Fig. 10(h), we show the de-fenced
image obtained using the proposed technique when the relative
motion between the observations is wrongly given as �−4; −4�,

(4, 4), and (8, 8). Observe that undesired artifacts appear and
the fence is not completely removed in Fig. 10(h).

Next, we conducted an experiment with real-world data,
wherein we have used a video of a song from a movie available
on YouTube. In Fig. 11(a), we show the first frame from the
captured video overlaid with optical flow vectors with respect to
the third observation estimated using [20]. Note that the esti-
mated optical flow depicts complex unconstrained motion of
the head of the person relative to the camera. Initially, we used
the proposed supervised-learning algorithm to detect the fence
pixels in each of the three frames chosen from the video. There
is a possibility of missing fence joints/pixels near the boundaries
of the image if we do not account for this problem. To deal
with fence pixels near the boundaries, we have padded the
input image and predict the location of missing joints by con-
sidering the dimensions of the fence texels nearest to the
boundary. In Fig. 11(b), we show the padded observation in
Fig. 11(a) along with fence joints detected using the proposed
algorithm. Consider the rhombic shape inside the red-colored
box in Fig. 11(b). We have already detected 3 corners of this
rhombus in Fig. 11(b) but the fourth vertex lies outside the
boundary of the image. We locate the coordinates of the fourth
corner in the padded region by considering the dimensions of
the partial rhombus inside the red-colored bounding box. The
predicted fourth vertex is shown with a cyan-colored cross in
Fig. 11(c). We repeat this procedure for all fence pixels lying
near the boundaries of the input image. Finally, we join the
detected fence joints lying inside the image and the predicted
joints lying outside the boundaries in the padded region with
straight edges to obtain the fence mask shown in Fig. 11(d).

Finally, the de-fenced image corresponding to the reference
frame of Fig. 11(a) obtained using the proposed algorithm is
shown in Fig. 11(e). Note that the de-fenced image is recon-
structed accurately over the face despite large and complex
motion among the frames. Importantly, observe that unlike the
methods in [22,23], the proposed de-fencing algorithm can
handle this video wherein only the individual in the back-
ground was moving rapidly. Since there is no parallax between
the fence and the background wall (except the face), there is
little contribution of the data fidelity term in Eq. (5) and the
fence occlusions are filled in only by the action of the smooth-
ness term. This causes minor blurring/smudging artifacts on
the neck, clothing of the person, and also, in some places,
in the background region.

Fig. 11. (a) One frame chosen from a video (image courtesy of and copyright Yash Raj Films Pvt. Ltd.; used with permission) [54]. (b) Detected
joints of fence texels using our learning-based algorithm before handling the boundary issue. (c) Detected and predicted fence joints after handling
the boundary issue. (d) Obtained fence mask by connecting the detected joints in (c). (e) De-fenced image corresponding to (a) obtained using the
proposed algorithm. See Visualization 2.

Fig. 10. Image de-fencing (synthetic case): (a) First frame (image
courtesy of and copyright Zoological Society of San Diego; used with
permission) [53] used in our method. (b), (c) De-fenced images ob-
tained using [7] and [32], respectively. (d)–(g) De-fenced images ob-
tained by the proposed algorithm by using one, two, three, and four
observations, respectively. (h) De-fenced image obtained using pro-
posed algorithm with wrong estimates of motion between the frames.
(i) Plot showing gain in PSNR with increase in the number of frames.

Table 2. Quantitative Evaluation of Inpainting and
De-fencing

Algorithm PSNR RMSE SSIM

Exemplar-based inpainting [7] 19.89 4.76 0.85
Total variation inpainting [8] 23.45 4.63 0.90
Our method (using 4 frames) 39.37 1.22 0.99
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Next, we conducted more experiments with several real-
world videos containing dynamic background objects. One of
the input frames from four different video sequences is shown
in Figs. 12(a)–12(d). Optical flow vectors relative to one of the
other observations in the video are superimposed on each of the
respective frames. Due to the non-global motion among
the background objects, we used the method of [20] to estimate
the pixel motion among the four observations. The fence pixels
in each of these observations shown in Figs. 12(a)–12(d) are
detected using the proposed learning-based approach. The
corresponding de-fenced images obtained using the proposed
algorithm are shown in Figs. 12(e)–12(h), respectively. We
observe that, unlike those in [22,23], the proposed algorithm
has effectively reconstructed data even for dynamic real-world
video sequences. Also note that, for all the results shown in
Figs. 12(a)–12(d), we used only three observations from the
captured video.We acknowledge that due to insufficient relative
motion between the input frames, in Fig. 12(e) we observe
minor blurring artifacts/residual fences over certain parts of
the reconstructed image.

To demonstrate the robustness of the proposed algorithm
across different kinds of camera motion such as translation, ro-
tation, zooming, etc., we have conducted one more experiment
using real-world data. In Figs. 13(a) and 13(b), we show two
frames chosen from a video captured by moving the camera
arbitrarily across the scene. The frame shown in Fig. 13(b)
is zoomed and rotated with respect to the reference frame of
Fig. 13(a). Note that in this video the fence texels are rectan-
gular in shape. Hence, to detect fence pixels, we trained a differ-
ent SVM model with a training dataset of images containing
rectangular fence texels. The de-fenced image obtained using
the proposed algorithm is shown in Fig. 13(c).

C. Comparisons with the State of the Art

To demonstrate the efficacy of the proposed method, we pro-
vide comparisons with the state-of-the-art inpainting [32] as
well as image de-fencing techniques [22,23]. A frame from a
video is shown in Fig. 14(a). The inpainted result is shown
in Fig. 14(b) using the method of [32], wherein we observe
that residues of fences are still present. In contrast, the fence

has been removed completely and there are no residues in
the result shown in Fig. 14(c), which was obtained using
our technique. Next, we compare our algorithm with the
recently proposed video de-fencing method in [22], which used

Fig. 12. First row: Images taken from videos. Second row: Corresponding de-fenced results using the proposed algorithm. See
Visualization 3, Visualization 4, Visualization 5, and Visualization 6.

Fig. 13. Video captured with free-hand motion of the camera:
(a), (b) Observations obtained from a video exhibiting zoom and
rotation. (c) De-fenced image obtained using the proposed algorithm.
See Visualization 7.

Fig. 14. (a), (d) Frames taken from video sequences. (b) Inpainted
result corresponding to (a) obtained using [32]. (c) De-fenced image
corresponding to (a) using the proposed algorithm. (e) De-fenced
result obtained using [22]. (f ) De-fenced result corresponding to
(d) using the proposed algorithm.
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visual parallax as a cue for fence detection. In Fig. 14(d), we
show a frame from a video used by [22]. The approach of [22]
failed to detect the horizontal fence structures due to absence of
any relative motion in the vertical direction between the neigh-
boring frames of the video. Fig. 14(e) shows the restored frame
obtained by the method in [22], where the horizontal bars are
still present in the de-fenced image. The de-fenced result
obtained using the proposed method is shown in Fig. 14(f ),
wherein all occluding fences are removed. To compare with the
very recent approach of Xue et al. [23], we used video sequences
named “fence1” and “fence4” from their work, which are
shown in Figs. 15(a) and 15(d). The de-fenced images obtained
using the method of [23] are shown in Figs. 15(b) and 15(e); in
Figs. 15(c) and 15(f ), we show the de-fenced images obtained
using the proposed algorithm. For the video sequence “fence1,”
both methods produced the comparable results shown in
Figs. 15(b) and 15(c). However, for the case of the video
sequence “fence 4,” the de-fenced image obtained using the
method in [23] is distorted at some places, which is apparent
in the close-up of the image in the inset of Fig. 15(e). In
contrast, the fence has been removed completely with hardly
any distortions in the result shown in Fig. 15(f ), which was
obtained using our algorithm. Since we use only three frames
from the videos, our method is more computationally efficient
than [22,23], which uses 5 and 15 frames, respectively.

It is possible to detect fences at various resolutions in the
observations using our supervised learning-based algorithm.
To illustrate this, we crop a portion of size 250 × 400 pixels
from the original frame shown in Fig. 15(d), wherein both
the fence closer to the camera and the one at greater depth
in the scene are present. We scale this cropped region by zoom
factors of ζ � �0.2∶0.2∶2.2�, i.e., we explored all magnification
factors from 0.2 to 2.2 in steps of 0.2. We report detections
of fence joints using the proposed supervised-learning tech-
nique on the scaled images at a few magnification factors in
Figs. 16(a)–16(c), respectively. Note that we are able to detect
joints in the fence closer to the camera and also most of the
joints in the fence at the farther depth. We merged all detected
fence joints at each resolution and show the final estimated
masks for both fences at original resolution �ζ � 1� of the
cropped image in Fig. 16(d).

D. Failure Case

The proposed de-fencing algorithm fails to de-fence an oc-
cluded scene if there are significant errors in motion estimation
between the frames. In Fig. 17(a), we show an image of moving
birds occluded behind a fence taken from a YouTube video.
We chose a few frames from the video and estimated the optical
flow using [20] between them. The error between the reference
image and the second frame backwarped with estimates of
relative motion using [20] is shown in Fig. 17(b). Several sig-
nificant errors in estimation of relative motion can be observed
in Fig. 17(b). The de-fenced image corresponding to Fig. 17(a)
but obtained using the proposed approach is shown in
Fig. 17(c). We observe that the de-fenced image contains un-
desired artifacts due to wrongly estimated local motion of birds.

5. CONCLUSION

We propose an approach for de-fencing an image using multi-
ple frames from a video captured by a camera undergoing
arbitrary relative motion with respect to a static/dynamic scene.
Our approach for image de-fencing necessitates the solution of
three sub-problems, which we identified as (a) automatic de-
tection of spatial locations of fences in the frames of the video,
(b) accurate estimation of relative motion between the frames,
(c) data fusion to fill in occluded pixels in the reference image

Fig. 15. Comparisons using the video sequences reported in [23].
(a), (d) Frames taken from video sequences. (b), (e) De-fenced results
corresponding to (a) and (d) obtained using [23]. (c) and (f ) De-fenced
image obtained using the proposed algorithm.

Fig. 16. (a)–(c) Detection of fence joints on images scaled globally
by factors ζ � 0.4; 1, and 1.6, respectively. (d) Estimated masks for
both fences at original resolution �ζ � 1� of the cropped image.

Fig. 17. Failure case: (a) A frame taken from a video. (b) Residual
error map between first and backwarped second frame. (c) De-fenced
image using our algorithm. See Visualization 8.
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with uncovered scene data in additional frames. We have pro-
posed a machine-learning approach for the first sub-problem.
To validate the accuracy of our proposed learning-based algo-
rithm for fence detection, we have proposed a challenging
fenced-image dataset containing 200 real-world images. An
optimization-based approach was formulated for fusing data
from multiple relatively shifted frames to fill in missing data
due to fence occlusions. Our results for both synthetic and
real-world data show the effectiveness of the proposed algo-
rithm. We also compared our algorithm with state-of-the-art
image de-fencing techniques as well as image-inpainting meth-
ods. We believe that a real-time automatic image de-fencing
algorithm will be useful, especially with the advent of “smart”
computational cameras.
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