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Abstract

Classical semantic segmentation methods, including the

recent deep learning ones, assume that all classes observed

at test time have been seen during training. In this paper, we

tackle the more realistic scenario where unexpected objects

of unknown classes can appear at test time. The main trends

in this area either leverage the notion of prediction uncer-

tainty to flag the regions with low confidence as unknown, or

rely on autoencoders and highlight poorly-decoded regions.

Having observed that, in both cases, the detected regions

typically do not correspond to unexpected objects, in this

paper, we introduce a drastically different strategy: It re-

lies on the intuition that the network will produce spurious

labels in regions depicting unexpected objects. Therefore,

resynthesizing the image from the resulting semantic map

will yield significant appearance differences with respect to

the input image. In other words, we translate the problem

of detecting unknown classes to one of identifying poorly-

resynthesized image regions. We show that this outperforms

both uncertainty- and autoencoder-based methods.

1. Introduction

Semantic segmentation has progressed tremendously in

recent years and state-of-the-art methods rely on deep learn-

ing [4, 5, 44, 42]. Therefore, they typically operate under

the assumption that all classes encountered at test time have

been seen at training time. In reality, however, guarantee-

ing that all classes that can ever be found are represented

in the database is impossible when dealing with complex

outdoors scenes. For instance, in an autonomous driving

scenario, one should expect to occasionally find the unex-

pected, in the form of animals, snow heaps, or lost cargo

on the road, as shown in Fig. 1. Note that the correspond-

ing labels are absent from standard segmentation training

datasets [7, 43, 15]. Nevertheless, a self-driving vehicle
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Figure 1: Detecting the unexpected. While uncertainty-

and autoencoder-based methods tend to be distracted by the

background, our approach focuses much more accurately

on the unknown objects.

should at least be able to detect that some image regions

cannot be labeled properly and warrant further attention.

Recent approaches to addressing this problem follow

two trends. The first one involves reasoning about the pre-

diction uncertainty of the deep networks used to perform

the segmentation [19, 23, 20, 12]. In the driving scenario,

we have observed that the uncertain regions tend not to co-

incide with unknown objects, and, as illustrated by Fig. 1,

these methods therefore fail to detect the unexpected. The

second trend consists of leveraging autoencoders to detect

anomalies [8, 31, 1], assuming that never-seen-before ob-

jects will be decoded poorly. We found, however, that au-

toencoders tend to learn to simply generate a lower-quality

version of the input image. As such, as shown in Fig. 1,

they also fail to find the unexpected objects.

In this paper, we therefore introduce a radically differ-

ent approach to detecting the unexpected. Fig. 2 depicts our

pipeline, built on the following intuition: In regions contain-

ing unknown classes, the segmentation network will make

spurious predictions. Therefore, if one tries to resynthesize

the input image from the semantic label map, the resynthe-
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Figure 2: Our Approach. (a) Input image from the Lost and

Found [32] dataset containing objects of a class the segmentation

algorithm has not been trained for. (b) In the resulting semantic

segmentation, these objects are lost. (c) In the image resynthesized

based on the segmentation labels, they are also lost. (d) Using a

specially trained discrepancy network to compare the original im-

age and the resynthesized one highlights the unexpected objects.

sized unknown regions will look significantly different from

the original ones. In other words, we reformulate the prob-

lem of segmenting unknown classes as one of identifying

the differences between the original input image and the one

resynthesized from the predicted semantic map. To this end,

we leverage a generative network [39] to learn a mapping

from semantic maps back to images. We then introduce a

discrepancy network that, given as input the original image,

the resynthesized one, and the predicted semantic map, pro-

duces a binary mask indicating unexpected objects. To train

this network without ever observing unexpected objects, we

simulate such objects by changing the semantic label of

known object instances to other, randomly chosen classes.

This process, described in Section 3.2, does not require see-

ing the unknown classes during training, which makes our

approach applicable to detecting never-seen-before classes

at test time.

Our contribution is therefore a radically new approach

to identifying regions that have been misclassified by a

given semantic segmentation method, based on comparing

the original image with a resynthesized one. We demon-

strate the ability of our approach to detect unexpected ob-

jects using the Lost and Found dataset [32]. This dataset,

however, only depicts a limited set of unexpected objects

in a fairly constrained scenario. To palliate this lack of

data, we create a new dataset depicting unexpected objects,

such as animals, rocks, lost tires and construction equip-

ment, on roads. Our method outperforms uncertainty-based

baselines, as well as the state-of-the-art autoencoder-based

method specifically designed to detect road obstacles [8].

Furthermore, our approach to detecting anomalies by

comparing the original image with a resynthesized one is

generic and applies to other tasks than unexpected object

detection. For example, deep learning segmentation algo-

rithms are vulnerable to adversarial attacks [41, 6], that is,

maliciously crafted images that look normal to a human but

cause the segmentation algorithm to fail catastrophically.

As in the unexpected object detection case, re-synthesizing

the image using the erroneous labels results in a synthetic

image that looks nothing like the original one. Then, a

simple non-differentiable detector, thus less prone to at-

tacks, is sufficient to identify the attack. As shown by our

experiments, our approach outperforms the state-of-the-art

one of [40] for standard attacks, such as those introduced

in [41, 6].

The implementation of our algorithm1, our new Road

Anomaly dataset2, and the labeling tool3 used to process it

are publicly available.

2. Related Work

2.1. Uncertainty in Semantic Segmentation

Reasoning about uncertainty in neural networks can be

traced back to the early 90s and Bayesian neural net-

works [10, 27, 28]. Unfortunately, they are not easy to train

and, in practice, dropout [37] has often been used to ap-

proximate Bayesian inference [11]. An approach relying on

explicitly propagating activation uncertainties through the

network was recently proposed [12]. However, it has only

been studied for a restricted set of distributions, such as the

Gaussian one. Another alternative to modeling uncertainty

is to replace a single network by an ensemble [23].

For semantic segmentation specifically, the standard ap-

proach is to use dropout, as in the Bayesian SegNet [19], a

framework later extended in [20]. Leveraging such an ap-

proach to estimating label uncertainty then becomes an ap-

pealing way to detect unknown objects because one would

expect these objects to coincide with low confidence regions

in the predicted semantic map. This approach was pursued

in [16, 18, 17]. These methods build upon the Bayesian

SegNet and incorporate an uncertainty threshold to detect

potentially mislabeled regions, including unknown objects.

However, as shown in our experiments, uncertainty-based

methods, such as the Bayesian SegNet [19] and network

ensembles [23], yield many false positives in irrelevant re-

gions. By contrast, our resynthesis-based approach learns

to focus on the regions depicting unexpected objects.

1 Implementation: github.com/cvlab-epfl/detecting-the-unexpected
2 Road Anomaly dataset: cvlab.epfl.ch/data/road-anomaly/
3 Our labeling tool: github.com/cvlab-epfl/LabelGrab
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2.2. Anomaly Detection via Resynthesis

Image resynthesis and generation methods, such as au-

toencoder and GANs, have been used in the past for

anomaly detection. The existing methods, however, mostly

focus on finding behavioral anomalies in the temporal do-

main [33, 21]. For example, [33] predicts the optical flow

in a video, attempts to reconstruct the images from the flow,

and treats significant differences from the original images as

evidence for an anomaly. This method, however, was only

demonstrated in scenes with a static background. Further-

more, as it relies on flow, it does not apply to single images.

To handle individual images, some algorithms compare

the image to the output of a model trained to represent the

distribution of the original images. For example, in [1], the

image is passed through an adversarial autoencoder and the

feature loss between the output and input image is then mea-

sured. This can be used to classify whole images but not

localize anomalies within the images. Similarly, given a

GAN trained to represent an original distribution, the algo-

rithm of [35] searches for the latent vector that yields the

image most similar to the input, which is computationally

expensive and does not localize anomalies either.

In the context of road scenes, image resynthesis has been

employed to detect traffic obstacles. For example, [30] re-

lies on the previous frame to predict the non-anomalous ap-

pearance of the road in the current one. In [8, 31], input

patches are compared to the output of a shallow autoencoder

trained on the road texture, which makes it possible to local-

ize the obstacle. These methods, however, are very specific

to roads and lack generality. Furthermore, as shown in our

experiments, patch-based approaches such as the one of [8]

yield many false positives and our approach outperforms it.

Note that the approaches described above typically rely

on autoencoder for image resynthesis. We have observed

that autoencoders tend to learn to perform image compres-

sion, simply synthesizing a lower-quality version of the in-

put image, independently of its content. By contrast, we

resynthesize the image from the semantic label map, and

thus incorrect class predictions yield appearance variations

between the input and resynthesized image.

2.3. Adversarial Attacks in Semantic Segmentation

As mentioned before, we can also use the comparison

of an original image with a resynthesized one for adversar-

ial attack detection. The main focus of the adversarial at-

tack literature has been on image classification [13, 3, 29],

leading to several defense strategies [22, 38] and detec-

tion methods [14, 24, 26]. Nevertheless, in [41, 6], clas-

sification attack schemes were extended to semantic seg-

mentation networks. However, as far as defense schemes

are concerned, only [40] has proposed an attack detection

method in this scenario. This was achieved by analyzing

the spatial consistency of the predictions of overlapping im-
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Figure 3: Discrepancy network. Given the original image, the

predicted semantic labels and the resynthesized image as input,

our discrepancy network detects meaningful differences caused by

mislabeled objects. The VGG [36] network extracts features from

both images, which are correlated at all levels of the pyramid. Im-

age and label features are then fused using 1 × 1 convolutions.

Both the features and their correlations are then fed to a decoder

via skip connections to produce the final discrepancy map.

age patches. We will show that our approach outperforms

this technique.

3. Approach

Our goal is to handle unexpected objects at test time in

semantic segmentation and to predict the probability that a

pixel belongs to a never-seen-before class. This is in con-

trast to most of the semantic segmentation literature, which

focuses on assigning to each pixel a probability to belong to

classes it has seen in training, without explicit provision for

the unexpected.

Fig. 2 summarizes our approach. We first use a given se-

mantic segmentation algorithm, such as [2] and [44], to gen-

erate a semantic map. We then pass this map to a generative

network [39] that attempts to resynthesize the input image.

If the image contains objects belonging to a class that the

segmentation algorithm has not been trained for, the cor-

responding pixels will be mislabeled in the semantic map

and therefore poorly resynthesized. We then identify these

unexpected objects by detecting significant differences be-

tween the original image and the synthetic one. Below, we

introduce our approach to detecting these discrepancies and

assessing which differences are significant.

3.1. Discrepancy Network

Having synthesized a new image, we compare it to the

original one to detect the meaningful differences that de-

note unexpected objects not captured by the semantic map.

While the layout of the known objects is preserved in the

synthetic image, precise information about the scene’s ap-

pearance is lost and simply differencing the images would
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Figure 4: Creating training examples for the discrepancy detector. (a) Ground-truth semantic map. (b) We alter the

map by replacing some object instances with randomly chosen labels. (c) Original image with the overlaid outlines of the

altered objects. (d) Image re-synthesized using the altered map. We train the discrepancy detector to find the pixels within

the outlines of altered objects shown in (c).

not yield meaningful results. Instead, we train a second net-

work, which we refer to as the discrepancy network, to de-

tect the image discrepancies that are significant.

Fig. 3 depicts the architecture of our discrepancy net-

work. We drew our inspiration from the co-segmentation

network of [25] that uses feature correlations to detect ob-

jects co-occurring in two input images. Our network re-

lies on a three-stream architecture that first extracts features

from the inputs. We use a pre-trained VGG [36] network

for both the original and resynthesized image, and a custom

CNN to process the one-hot representation of the predicted

labels. At each level of the feature pyramid, the features of

all the streams are concatenated and passed through 1 × 1

convolution filters to reduce the number of channels. In par-

allel, pointwise correlations between the features of the real

image and the resynthesized one are computed and passed,

along with the reduced concatenated features, to an upcon-

volution pyramid that returns the final discrepancy score.

The details of this architecture are provided in the supple-

mentary material.

3.2. Training

When training our discrepancy network, we cannot ob-

serve the unknown classes. To address this, we therefore

train it on synthetic data that mimics what happens in the

presence of unexpected objects. In practice, the semantic

segmentation network assigns incorrect class labels to the

regions belonging to unknown classes. To simulate this,

as illustrated in Fig. 4, we therefore replace the label of

randomly-chosen object instances with a different random

one, sampled uniformly from the set of Cityscapes evalu-

ation classes. We then resynthesize the input image from

this altered semantic map using the pix2pixHD [39] gener-

ator trained on the dataset of interest. This creates pairs of

real and synthesized images from which we can train our

discrepancy network. Note that this strategy does not re-

quire seeing unexpected objects during training.

3.3. Detecting Adversarial Attacks

As mentioned above, comparing an input image to a

resynthesized one also allows us to detect adversarial at-

tacks. To this end, we rely on the following strategy. As for

unexpected object detection, we first compute a semantic

map from the input image, adversarial or not, and resynthe-

size the scene from this map using the pix2pixHD genera-

tor. Here, unlike in the unexpected object case, the seman-

tic map predicted for an adversarial example is completely

wrong and the resynthesized image therefore completely

distorted. This makes attack detection a simpler problem

than unexpected object one. We can thus use a simple non-

differentiable heuristic to compare the input image with the

resynthesized one. Specifically, we use the L
2 distance be-
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tween HOG [9] features computed on the input and resyn-

thesized image. We then train a logisitic regressor on these

distances to predict whether the input image is adversarial

or not. Note that this simple heuristic is much harder to

attack than a more sophisticated, deep learning based one.

4. Experiments

We first evaluate our approach on the task of detecting

unexpected objects, such as lost cargo, animals, and rocks,

in traffic scenes, which constitute our target application do-

main and the central evaluation domain for semantic seg-

mentation thanks to the availability of large datasets, such

as Cityscapes [7] and BDD100K [43]. For this application,

all tested methods output a per-pixel anomaly score, and we

compare the resulting maps with the ground-truth anomaly

annotations using ROC curves and the area under the ROC

curve (AUROC) metric. Then, we present our results on the

task of adversarial attack detection.

We perform evaluations using the Bayesian SegNet [19]

and the PSP Net [44], both trained using the BDD100K

dataset [43] (segmentation part) chosen for its large num-

ber of diverse frames, allowing the networks to generalize

to the anomaly datasets, whose images differ slightly and

cannot be used during training. To train the image synthe-

sizer and discrepancy detector, we used the training set of

Cityscapes [7], downscaled to a resolution of 1024 × 512

because of GPU memory constraints.

4.1. Baselines

As a first baseline, we rely on an uncertainty-based se-

mantic segmentation network. Specifically, we use the

Bayesian SegNet [19], which samples the distribution of the

network’s results using random dropouts — the uncertainty

measure is computed as the variance of the samples. We

will refer to this method as Uncertainty (Dropout).

It requires the semantic segmentation network to contain

dropout layers, which is not the case of most state-of-the-

art networks, such as PSP [44], which is based on a ResNet

backbone. To calculate the uncertainty of the PSP network,

we therefore use the ensemble-based method of [23]: We

trained the PSP model four times, yielding different weights

due to the random initialization. We then use the variance

of the outputs of these networks as a proxy for uncertainty.

We will refer to this method as Uncertainty (Ensemble).

Finally, we also evaluate the road-specific approach

of [8], which relies on training a shallow Restricted Boltz-

mann Machine autoencoder to resynthesize patches of road

texture corrupted by Gaussian noise. The regions whose ap-

pearance differs from the road are expected not to be recon-

structed properly, and thus an anomaly score for each patch

can be obtained using the difference between the autoen-

coder’s input and output. As the original implementation

was not publicly available, we re-implemented it and make

the code available1 for future comparisons. As in the origi-

nal article, we use 8× 8 patches with stride 6 and a hidden

layer of size 20. We extract the empty road patches required

by this method for training from the Cityscapes images us-

ing the ground-truth labels to determine the road area. We

will refer to this approach as RBM.

The full version of our discrepancy detector takes as in-

put the original image, the resynthesized one and the pre-

dicted semantic labels. To study the importance of using

both of these information sources as input, we also report

the results of variants of our approach that have access to

only one of them. We will refer to these variants as Ours

(Resynthesis only) and Ours (Labels only).

4.2. Anomaly Detection Results

We evaluate our method’s ability to detect unexpected

objects using two separate datasets described below. We

did not use any portion of these datasets during training,

because we tackle the task of finding never-seen-before ob-

jects.

4.2.1 Lost and Found

The Lost And Found [32] dataset contains images of small

items, such as cargo and toys, left on the street, with per-

pixel annotations of the obstacle and the free-space in front

of the car. We perform our evaluation using the test set,

excluding 17 frames for which the annotations are miss-

ing. We downscaled the images to 1024× 512 to match the

size of our training images and selected a region of inter-

est which excludes the ego-vehicle and recording artifacts

at the image boundaries. We do not compare our results

against the stereo-based ones introduced in [32] because our

study focuses on monocular approaches.

The ROC curves of our approach and of the baselines

are shown in the left column of Fig. 5. Our method out-

performs the baselines in both cases. The Labels-only and

Resynthesis-only variants of our approach show lower accu-

racy but remain competitive. By contrast, the uncertainty-

based methods prove to be ill-suited for this task. Qualita-

tive examples are provided in Fig. 6. Note that, while our

method still produces false positives, albeit much fewer than

the baselines, some of them are valid unexpected objects,

such as the garbage bin in the first image. These objects,

however, were not annotated as obstacles in the dataset.

Since the RBM method of [8] is specifically trained to

reconstruct the road, we further restricted the evaluation to

the road area. To this end, we defined the region of interest

as the union of the obstacle and freespace annotations of

Lost And Found. The resulting ROC curves are shown in the

middle column of Fig. 5. The globally-higher scores in this

scenario show that distinguishing anomalies from only the

road is easier than finding them in the entire scene. While
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Figure 5: ROC curves for unexpected object detection. The first two columns show results for the Lost and Found [32]

dataset: The curves on the left were computed over the entire images, excluding only the ego-vehicle. Those in the middle

were obtained by restricting evaluation to the road, as defined by the ground-truth annotations. The right column depicts the

results on our Road Anomaly dataset. The top and bottom rows depict the results of the Bayesian SegNet and the PSP Net,

respectively. The methods are ordered according to their AUROC scores, provided on the right of the methods’ name.

the RBM approach significantly improves in this scenario,

our method still outperforms it.

4.2.2 Our Road Anomaly Dataset

Motivated by the scarcity of available data for unexpected

object detection, we collected online images depicting

anomalous objects, such as animals, rocks, lost tires, trash

cans, and construction equipment, located on or near the

road. We then produced per-pixel annotations of these

unexpected objects manually, using the Grab Cut algo-

rithm [34] to speed up the process. The dataset contains

60 images rescaled to a uniform size of 1280 × 720. We

make this dataset2 and the labeling tool3 publicly available.

The results on this dataset are shown in the right column

of Fig. 5, with example images in Fig. 7. Our approach out-

performs the baselines, demonstrating its ability to general-

ize to new environments. By contrast, the RBM method’s

performance is strongly affected by the presence of road

textures that differ significantly from the Cityscapes ones.

4.3. Adversarial Attack Detection

We now evaluate our approach to detecting attacks using

the two types of attack that have been used in the context of

semantic segmentation.

Adversarial Attacks: For semantic segmentation, the two

state-of-the-art attack strategies are Dense Adversary Gen-

eration (DAG) [41] and Houdini [6]. While DAG is an it-

erative gradient-based method, Houdini combines the stan-

dard task loss with an additional stochastic margin factor
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 6: Lost and Found results. The top images depict algorithmic steps and the bottom ones our results along with those

of the baselines. Our detector finds not only the obstacles on the road but also other unusual objects like the trash container

on the right side of the road. By contrast Uncertainty (Dropout) reports high uncertainty in irrelevant regions and fails to

localize the obstacles. RBM finds only the edges of the obstacles. Our approach detects the unexpected objects correctly.

between the score of the actual and predicted semantic maps

to yield less perturbed images. Following [40], we gener-

ate adversarial examples with two different target semantic

maps. In the first case (Shift), we shift the predicted label

at each pixel by a constant offset and use the resulting label

as target. In the second case (Pure), a single random label is

chosen as target for all pixels, thus generating a pure seman-

tic map. We generate adversarial samples on the validation

sets of the Cityscapes and BDD100K datasets, yielding 500

and 1000 images, respectively, with every normal sample

having an attacked counterpart.

Results: We compare our method with the state-of-the-art

spatial consistency (SC) work of [40], which crops random

overlapping patches and computes the mean Intersection

over Union (mIoU) of the overlapping regions. The results

of this comparison are provided in Table 1. Our approach

outperforms SC on Cityscapes and performs on par with it

on BDD100K despite our use of a Cityscapes-trained gen-

erator to resynthesize the images. Note that, in contrast with

SC, which requires comparing 50 pairs of patches to detect

the attack, our approach only requires a single forward pass

through the segmentation and generator networks. In Fig. 8,

we show the resynthesized images produced when using ad-

versarial samples. Note that they massively differ from the

input one. More examples are provided in the supplemen-

tary material.

5. Conclusion

In this paper, we have introduced a drastically new ap-

proach to detecting the unexpected in images. Our method

is built on the intuition that, because unexpected objects

have not been seen during training, typical semantic seg-

Dataset Model Method

Detection

DAG Houdini

Pure Shift Pure Shift

Cityscapes

BSeg
SC 99% 98% 100% 98%

Ours 100% 100% 100% 98%

PSP
SC 98% 90% 98% 100%

Ours 100% 99% 99% 100%

BDD

BSeg
SC 100% 100% 98% 100%

Ours 98% 98% 100% 90%

PSP
SC 92% 100% 96% 100%

Ours 100% 96% 98% 95%

Table 1: Attack detection on Cityscapes and BDD100K. Our

method achieves higher AUROC on Cityscapes than SC and com-

parable ones on BDD100K, despite the fact that we rely on a gen-

erator trained on Cityscapes.

mentation networks will produce spurious labels in the cor-

responding regions. Therefore, resynthesizing an image

from the semantic map will yield discrepancies with re-

spect to the input image, and we introduced a network

that learns to detect the meaningful ones. Our experiments

have shown that our approach detects the unexpected ob-

jects much more reliably than uncertainty- and autoencoder-

based techniques. We have also contributed a new dataset

with annotated road anomalies, which we believe will fa-

cilitate research in this relatively unexplored field. Our ap-

proach still suffers from the presence of some false posi-

tives, which, in a real autonomous driving scenario would

create a source of distraction. Reducing this false positive

rate will therefore be the focus of our future research.
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Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Ensemble) Anomaly score - RBM

Input image with anomalies highlighted Predicted semantic map Resynthesized image

Anomaly score - Ours Anomaly score - Uncertainty (Dropout) Anomaly score - RBM

Figure 7: Road anomaly results. As in Fig. 6, in each pairs of rows, the consecutive images at the top depict algorithmic

steps and the ones at the bottom our results along with those of the baselines.

(a) Ground truth map

(b) Input image (normal)

(c) Predicted map (normal)

(d) Resynthesized (normal)

(e) Predicted map (Shift)

(f) Resynthesized image (Shift)

(g) Predicted map (Pure)

(h) Resynthesized image (Pure)

Figure 8: Visualizing adversarial attacks. Without attacks, the resynthesized image (d), obtained from (c), looks similar to

the input one (b). By contrast, resynthesized images ((f) and (h)) obtained from the semantic maps ((e) and (g)) computed

from an attacked input differ massively from the original one.
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