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Motivation
Understanding the behavior of DNNs in safety and

security-critical applications 1s paramount

Health-care applications Self-driving cars



Szegedy et al. arXiv 2013

Adversarial Examples (AE)

DNNSs are sensitive to imperceptable perturbations

+.007 X —
€T ry
esign(VgJ(0,x,y))
“panda” “gibbon”
57.7% confidence 99.3 % confidence

Key properties of adversarial examples
* Small perturbation
* High confidence
* Transferability
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Implications of adversarial attacks against
autonomous vehicles

Perturbation Max speed 100




A unifying perspective of thesis

I.Understand the underlying working

mechanisms o

- adversarial attac!

DNNSs

S OI

2. Design adversarial attacks to both fool
and explain the DNNs
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In order to build trust in safety-critical systems, we need to

build transparent models that have the abil

ity to explain

why they predict what they pred

1Ct

Our work focuses on Bag-of-visual words (BoW)

pooling architectures to understand the decisions

of DNNs



Standard DNN architectures are difficult to understand
how they reach to their decisions

GT: Meeting room

Feature extractor

Input image

(scene recognition dataset)

presence of table, board,
chairs, light bulb indicates

meeting room class

—>
Global Average
Pooling

Final convolution

[

FC

Fully connected

feature map representation

Non-Interpretable

Scores

— Meeting

room

Instead of GAP, replace with learnable BoW pooling layer to
learn interpretable representation
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NetBoW: DNN with distance-based learnable pooling layer

h(T)
K-dimensional
Compute the distance (Interpretable)
between local feature and T
GT: Meetlng room prototype center
g \ ® K-Prototypes o
@ —_— 2 o ——F?
" Y, s |
Feature extractor Final convolutional learnable BoW pooling — Scores
I: Input image feature map layer BoW vector
(scene recognition dataset) c; € RD
presence of table, board, P (I) — E ar(X; .
chairs, light bulb indicates o (i) Network learns the 1. weights of
meeting room class ~allxi—cn| backbone, 2. prototype centers
€ == (c1, o, C3), and 3. FC layer jointly
ag (Xz )

Zkz’ e—a||x7;—ck/||2 11



Advantage: Interpretable BoW representation

Training 1mage

Test image

pooling

GT: Flower

f(x) denotes the feature
extracted from the
backbone network for
image X

Training image

Q)
( Flower )
[Bird _Fe Flower
\_ J

h(x): Bag of word vector
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Interpretability by Design

BoW Networks are interpretable since one can understand the
reasons for particular output decision through the prototype
activations and not in post-hoc manner

Diagnose the failure modes such as adversarial
examples, out-of-distribution examples and
analyze them more naturally and intrinsically



What does prototype represent in input image spacer

O O O Training embeddings
® ® @ Prototypes

After training, assign the o
.« . . nearest . 0O
nearest training image whose < 15<O
” ” O O
embedding is closest to the / Q\éo
C
prototype 3

Assign this visual
representation to prototype

Training 1mage
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NetBoW helps to understand the reasons for a
label prediction through visual codebook

Input images

R (YOI W oS

MNIST FMNIST CIFAR10

|

e 23

MNIST FMNIST CIFAR10




Can we understand the mechanism of adversarial examples

through interpretable models in a better way?
Pred: Flower

O O O Training embeddings
® ® @ Prototypes

The feature embedding moves away

Adversarial image  from prototype of clean label and comes
closer to prototype of adversarial label

16



How can we use the interpretable BoW networks
to detect the adversarial examples

—@ Key idea
Adversarial attacked image should activate the prototype of other class. Therefore, we
detect the attacks by comparing the input image with the visual representation of

activated prototype through an auxiliary detector network

Impact:

Adversarial images —

[KKN & MS, ICCVW19]



Adversarial example detection: pose the problem as similarity
matching of input image to highest activated prototype

000 Training
@0 0 Drototypes

Similar approach
can be used to
detect out-of-

distibution
examples
Closest prototype Closest prototype
Similar— No attack Dissimilar — Attack

D: Siamese-based detector to predict if the input pair 1s similar or dissimilar 18



Is the detector robust to attacks all the time?

* No. Detector breaks down with our defense-aware adaptive attack in
pure white box setting (aware of detector weights and stratety)

* However, the approach works in gray-box (adversary aware of
defense mechanism) and black-box setting (no access to detector
weights) wrt detector

®»

Black Grey White

o >
Low Adversary’s Knowledge High
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Adversary detection beyond image-recognition

Adversarial example detection in semantic segmentation by comparing input image to the image

resynthesized from output map

[ N

E Segmentation
—_—
Network

Input image
Similar

No attack!

Resynthesized image

D: Computes L distance in HOG feature space

Predicted map

—

G

Pix2pix

(labels to image)

KL, KKN. PF & MS. ICCV19]



Adversary detection beyond image-recognition

Adversarial example detection in semantic segmentation by comparing input image to the image
resynthesized from output map

\

[ N

Segmentation
Network

\ )

-
Predicted map
(labels flipped)

Adversarial image
Dissimilar

—

G

Attacked!

Pix2pix
(labels to image)
D: Computes Ly distance in HOG feature space [KI., KIKN. PF & MS, ICCV19]

Resynthesized image
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Downside: all features participate in the feature

agoregation step of BoW pooling

Test image
(GT: Laundry room)

-

\_

person )

laundry|

Training image

—

h(x): Bag of word vector

FC Meeting X

room

23



Remove the influence of non-discriminative regions. How?

—@ Key idea: attention-aware pooling

By introducing the attention during the feature aggregation process, the BoW
representation becomes more discriminative

person

aundr person

GT: Laundry room FC l GT: Laundry room i FC

Meeting room X Laundry room v/ o4
[KKN & MS, BMVC-18]



Key idea: introduce attention in BoW pooling to
remove contribution of non-discriminative features

i |

Feature extractor

Final convolutional
feature map

Input image

(GT: Laundry l

room)

Attention
module — >

[KKN & MS, BMVC-18]

K-dimensional

K-prototypes

average
—>®———> — >
X FC room
Learnable pooling Scores
layer BoW BoW vector
feature map
Maximum
along
channel
average single spatial attention
poohng map
class-specific
attention maps
Scores Laundry
room
25



Attention ignores the non-discriminative regions (such as the person which is
common across classes) and focuses on discriminative regions of the output class

casino studio music vmdeo store
. = |

'S
B . G e
e R

- ¥ _— I
! _;‘“..__._;-.i-h.——‘-rjl

Attention
map




By incorporating attention, we can significantly improve
the discriminative power of BoW latent representation

Accuracy?
Pooling Anno. Birds Cars Aircrafts MIT-Indoor
VGG-16 BBox 79.9 88.4 86.9 -
Attention BBox  77.2  90.3 85.0 -
4%, [ NetBoW BBox 744  89.1 85.6 - ]
Attentional-NetBoW  BBox
Attention helps NetVLAD BBox 824  89.8 88.0 -
the most in Attentional-NetVLAD  BBox
BoW pooling VGG-16 76.0 82.8 82.3 76.6
Attention 77.0 874 81.4 77.2
3%/, [ NetBoW 68.9  85.2 79.9 76.1 J
Attentional-NetBoW
NetVLAD 80.6 894 86.4 79.2

Attentional-NetVLAD

[KKN & MS, BMVC-1§]



'The reasons for success of adversarial attacks in
fine-grained datasets has lot of subtleties

Benefits with fine-grained datasets
* Understand the DNNs workings at local patch level instead of global object level

e More sensitive to attacks since local perturbations can change the label

Cormorant

Example images of some
confusing classes

Crow

Tern

28
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ProtoPNet: Classity image based on evidence

from local patches

pOOlil’lg Weights ate +1 ot -0.5
depending on label of
prototype and logit

1

aogs

m

Scores

Label: blackfooted
albatross

(13-

Feature extractor

Final convolutional

Input image feature map blackfooted
albatross
Yellow box denotes the visual representation of prototype patch .

ProtoPNet [Chen et al. NeurIPS 2019] along with full training image from which the patch is extracted
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t-SNE visualization of learned prototypes

(Digging deeper: understanding reasons for success of attacks)

Prototypes of first 12 classes in CUB200
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40

Background prototypes of different classes
are close to each other and therefore can

be easily attacked to change from one class
to other

Class 3

Labels
0

w N =

Class 7

H = ©O© 00 NOoO U,

= O
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An intuitive example to understand the success of

adversarial attacks on ProtoPNet

A AALALAALAALA
HHLDG)\IO\U‘IAUUND—IO%

= O

Prediction:
Rhinceros Auklet

Adversarial

Ground Truth:

Clean

Prediction:

32



How can these observations help to improve the robustness?
maximal separation of discriminative features

—@ Intuition

If we can maximally separate the latent features of foreground (discriminative) regions
of different classes and also remove the influence of background regions in the
decision process, then we have made the attacker task difficult to conduct attacks

1. Attentional cluster loss - pulls the high-attention regions in a sample close to the
nearest prototype of its own class

2. Attentional separation loss - pulls the high-attention regions in a sample away
from the nearest prototype of other class

[KIN & MS, ACCV20]



Attention-aware architecture

. removes contribution
1. Attentional Cluster loss

. . from backerond prototype
2. Attentional Separation loss ) p typ
tot Similarity maps Modulated maps
/\ pr%l?e¥£ © R thllx SR
pooling 1
_— > — > blackfooted
foregrg}md . 7.0 0.99 albatross
prototype
blackfooted (same class) -
albatross ke Q.5
/\‘ ' background —> g 0.0
prototype 'E‘; : ~0.5
backbone ° .s] e o
— _— py o [
° = o o
[ )
Input image Feature map / 0.0
foreground
e Res) A Scores
BoW similarity
scores
maxpool
Attention along depth
module g
Spatial
Class-attention maps attention
GAP
Attention module | blackfooted

[KKN & MS, ACCV20] Predictions albatross o



Our method yields well-separated foreground prototypes while

clustering background prototypes

Ours

Background prototypes do
not participate in decision
process by attention

Prediction:

Labels Blackfooted
< Albatross
<5 v
< °>  GT: Blackfooted
o albatross
4 9

10
<4 11
Prediction:
Blackfooted

Albatross
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Visualization of learned Prototypes

(our prototypes are fine-grained and complete non-discriminative regions
activated by background prototype)

(a) ProtoPNet
b) Ours ackground background background )

a -~
\ l ‘ /

Visualization of 10 classs specific prototypes of Black Footed Albatross class

background

36



Our adversarial training strategy with novel losses consistently

achieves higher performance against white-box attacks

Accuracy!

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM
Network (Steps,e¢) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10.,8)
& P* [r] 54.9% 44.9% 24.2% 41.9% 18.2% 41.2% 16.9% 41.9% 18.7%
= AP+PCL* [183]60.7% 50.5% 28.5% 47.1% 22.8% 46.7% 21.6% 47.2% 23.5%
8 [Ours-A* 69.3%56.1%34.8%51.7% 29.6% 50.8% 28.0% 52.0% 32.5%]
»  ProtoPNet* [29]60.1% 44.5% 26.9% 57.1% 10.9% 35.9% 10.3% 37.6% 13.5%
Ours-FR* 63.0%53.83%37.3%49.4% 30.4%48.1%28.6% 49.7%31.1%

o AP* [71] 58.0% 47.5% 29.1% 44.3% 25.6% 44.0% 24.34%44.4% 26.2%
e AP+PCL* [183]61.8% 52.1% 30.9% 48.9% 24.7% 48.6% 23.3% 49.1% 25.4%
8 [Ours—A* 68.2%57.1%36.5%53.2% 30.4% 52.6% 29.2% 53.5% 31.2%]
»  ProtoPNet* [29]55.1% 40.0% 28.9% 26.5% 11.3% 29.7% 9.60% 25.6% 10.2%

Ours-FR* 64.4%55.5%37.4%51.2% 30.6% 50.4% 28.7% 52.1% 32.3%
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Black-box auto-attack ensemble
on adversarial trained models

Accuracy !

Base Attacks Clean APGD (CE) APGD (DLR) Square Auto attack
o AP* [74] 54.9%  15.1% 14.0% 39.2%  22.7%

™~ *

8 Ours-A* 67.0% 23.7% 15.1% 47.3%  28.7% \
» ProtoPNet* [29] 55.6% 2.8% 2.3 % 31.6%  12.2%
Ours-FR* 60.4% 24.2% 15.5% 46.2%  28.6%
o AP* [74] 55.7%  20.2% 14.4% 441%  26.2%
7 AP4PCL* [186] 59.7%  20.8% 17.3% 51.1%  29.7 %

8 [ Ours-A* 65.0% 24.4% 17.4%  51.9% 31.2% |
» ProtoPNet* [29] 51.9% 1.1 % 1.0 % 28.0%  10.0%

Ours-FR* 62.1% 27.4% 18.5% 52.1% 32.7%

€=8
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Focus areas

Adversarial

Attacks
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Adversarial Attacks

* Attacks beyond image recognition
* White-box attacks on semantic segmentation
* Black-box transfer attacks on visual object tracker

* Improving the transferability of attacks
* Learning transferable transferable perturbations

* How can we use adversarial attack to improve DNNs
* Semantic adversarial attacks to study disentanglement



Exploiting context to understand
the susceptibility of DNNs for

demantic Segmentation



Understanding context 1s the core building block in modern segmentation networks

Fully Convolutional Network

forward/inference

backward/learning

FCN, Jonathan et al. CVPR15

-
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¢ Generation .
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IIInput
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&
o

Adaption |,
&Cony |

\\‘ W

y Hd

Concat &
—
Projection i

|

C

’ C 2
— Concat —‘.’
W

¢
W

Distribute
7— Attention I T
Generation
W Ad W Zd

PSANet, Jonathan et al. ECCV18

<

no-context
PSPNet, Jonathan et al. CVPR18

Context

r B —fow-B
] e~

~od- ]

% »@
|

WQ_’.
| =——=

CONCAT

(a) Input Image

(b) Feature Map (c) Pyramid Pooling Module

Pyramid Scene Parsing

(d) Final Prediction

\\l VA
‘ . :heavy

DANet, Jonathan et al. CVPR19

Position Attention Module
(HXW)x(HxW)

CxHxW
reshape reshape
—_—
f CxHxW
Sum fusion—> <
x ﬂ reshape
CxHxW i

ResNet

convolution layer
CxHXW

reshape é l/
—> D>
CxC

Channel Attention Module

Spatial matrix operation Channel matrix operation ) Matrix multiplication @ Element-wise Sum

Dual (Spatial and channel) Attention
42



Exploiting context in semantic segmentation models

—@' Key finding

We discover that context empowers the attackers to fool objects far away from the
perturbed area. For example, a perturbation of size 4% of image area fools the
prediction at 60% of image area for PSANet.

e
L.‘

Adversarial predlctlon

Image perturbed with 9% Clean prediction

[KKN & MS, ECCV20]



Perturbing static regions (e.g., road, sidewalk) atfects the predictions at
far away dynamic regions (e.g., bus, pedestrians) in inconspicuous way

Realistic-looking segmentation map

P —

Ad¥elearidiiageoe Ad+clsanigirpdiditerivns

Indirect local attack _ Fools the distant
in red box regions dynamic objects

[KKN & MS, ECCV-20]
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Context-aware networks are highly vulnerable to indirect

attacks than FCN

Adversarial image with local perturbations Clean segmentation

PSANet PSPNet




Pertur] bed
side red

Indirect adaptive attack results

Adversarial predictions

Adversarial image Clean predictions
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Another perspective: Indirect attacks helps to understand contextual
dependencies in DNNSs (e.g. sky-aeroplane, road-car, road-bus)

Adversarial image Perturbation Normal prediction Adversarial prediction

47



Transferable Adversarial Examples

(Perturbation generated from one network transfers to other network)

v

Source model
(White-box attack ——»

generation)
x Ery
o esign(Va (0,2,1)
panda “gibbon”
57.7% confidence 99.3 % confidence
Black-box scenario
| (Zero-query)
Gibbon <+«—— Target model <

(wrong)

Transferable perturbations require no access to the target model
48



Adversarial Attacks

* Attacks beyond image recognition
* White-box attacks on semantic segmentation
* Black-box transfer attacks on visual object tracker

* Improving the transferability of attacks
* Learning transferable transterable perturbations

* How can we use adversarial attack to improve DNNs
* Semantic adversarial attacks to study disentanglement

49



Challenges 1n transfer-based black-box attacks on object trackers

(VOT takes template as input and detects it in all subsequent search images)

Frame 0 Frame 10 Frame 20  Frame 30 0™
g T T ol e BILTEOU we | TN
J 3 J'I L .f\‘ l- R l l L jn A"' IILF.LZ l ) -F‘ . y
=, B0, 3 =3 . 4 -" Cﬁ

v “* ; h C4
gy B

Q: Image

Novel objects at test time Computing perturbation per frrame
(non-overlapping with training should be efficient as trackers work at

Should generalize to different tracker
frameworks such as SiamCAR,
objects) real-time SiamBAN, OCEAN

50



Goal: Efficient black-box attacks on visual object tracking

—@ Key idea

We propose to learn to generate a single perturbation from the object template only,
that can be added to every search image and still successtully fool the tracker for the

entire video.

Impact:

Learns to generate powerful transferable perturbations on unknown videos and trackers



Temporally-transterable perturbation generator

- Generator urbat Adversarial search
perturoation 1magces Output
Template Projection P
2fl— L~ 8 —e(an)
Target location mask ? - Nornlal
O Adversarial
['fool S Eshift + »Cp
Search 1mages } l
Design principles to improve transferability Decrease the Increase the  Percerptual loss
confidence at confidence b/w clean &
1. Perturbation is generated from template only predicted at target adversarial

2. Generated perturbation is shared across all search images position position image
52



Visualization of generated
directional perturbations

Generator

(1)

Target bounding box —>»(3,3)
offset from the center =

(0,-4) (-4,0)

(0,4) (-4,0)

Generated perturbation contains adversarial object-like

patch at target position




Targeted adversarial attacks to steer the target
tracker to follow the object at a fixed ottfset

Using 12 precomputed directional perturbations

ma-

S

05

N
Lo =
\

i) )

Ground Adversarial Adversarial
truth prediction target
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Tracking Speed (FPS)

Our transter-attacks are highly etficient
and effective too

go| | MM Original [ Ours WM CSA(T) [ CSA(S) WM CSA(TS) Generator trained on SiamRPN++ (ResNet50) S: Success; P: Precision
Our method do not Methods SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online
i P S P S P S P S P S P
60 degrade the otiginal (M 1) ™M) ™M) (1) 1) Q) 1) (1) 1)
0.657 0.862 0.692 0910 0.696 0.908 0.650 0.847 0.669 0.884
tracker speed
40 4 0.613 0.833 0.590 0.793 0.657 0.852 0.649 0.849 0.614 0.843
0.281 0.440 0.371 0531 0373 0.536 0.641 0.840 0.390 0.645
0.348 0.431 0.347 0510 0391 0.559 0.642 0.844 0.423 0.705
20 - Qurss(TD) 0.347 0.528 0.478 0.720 0.444 0.599 0.643 0.839 0.492 0.768
Ours (TD) 0.217 0.281 0.198 0.254 0.292 0.377 0.631 0.821 0.345 0.452 ]
Ours; J 0.408 0.616 0.478 0.721 0.567 0.770 0.646 0.843 0.592 0.829
01— : _ . . [ Ours 0212 0.272  0.198 0.253 0.292 0.374 0638 0837 0.338 0.440 |
SiamRPN++(R) SiamBAN SiamCAR DiMP Ocean (online) Average

(CVPR19) (CVPR20) (CVPR20) (Iccvl9) (ECCV20)
Performance of Ours (Universal perturbation generated from single
tixed template) and Ours (TD) (perturbations generated from template

Y-axis is tracker speed and x-axis 1s different tracker of given input vid elo) method are at same range

frameworks

w
Ul



Adversarial Attacks

* Attacks beyond image recognition
* White-box attacks on semantic segmentation
* Black-box transfer attacks on visual object tracker

* Improving the transferability of attacks
* Learning transferable transferable perturbations

* How can we use adversarial attack to study DNNs
* Semantic adversarial attacks to study disentanglement



Understanding and Improving the
Iransterability of Generative
Adversarial Perturbations



Learning 'l ransterable Adversarial Perturbations

We investigate the transferability of generative perturbations when the
conditions at inference time differ from the training ones in terms of

( ™
1. Target architecture Generator was trained to attack a VGG-16 but the target

network 1s a2 ResNet152
\_ _J

(

2. Tﬂfget data test data comes from ImageNet
L _J

Generator was trained using the Paintings dataset, but the

Generator was trained to attack an image recognition

3. Target task

model but faces an object detector at test time

Ul
o



Now let’s take a step back and see how deep neural networks
build up their understanding of images?

< g
<«

Bottom layers

V/ % ==

==
.

= —]

=

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a) Parts (layers mixed4b & mixed4c)

Inception filter visualization

Credit: https://distill.pub /2017 /feature-visualization



https://distill.pub/2017/feature-visualization/appendix/
https://distill.pub/2017/feature-visualization/appendix/

Learning 1ransterable Adversarial Perturbations

—@ Key idea

Disrupting the mid-level features using feature separation loss empowers attackers
to learn perturbations with high transfer rates across target architectures, target
datasets and target tasks without any queries

Most prior works in transfer-based . Our work focuses on
black-box attacks focus on only unknown black-box attacks on unknown
architecture architecture, data and task

[KKN & MS, NeurIPS21]



61

Training a perturbation generator with
mid-level feature separation loss

Source model

Soutrce data Unbounded Bounded
L T Image Recognition Classifier A ?
Input image Adversarial image
g’ i Ad ial
e Generator Projection = —»@—v — ﬂ prggfgglgg —> Source taSk
- J* — B [ - — P — =
= | Feature
Q loo Se D aratlon loss
/ /]

Paintings
D ] = Normal

o - predlctlon

\ [Training Phase) /
a L ( Testing Phase )

Target data

<&

Domain

<«

PASCAL VOC
Domai

\

Classifier B

pelican

s Detector A

—

ﬂﬁmﬂﬂﬂ

v

Target model

Target task
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62

CNNs with different architectures share similar filter bank

5
a SqueezeNet  VGG16  ResNetl52 DenseNet121

4 DenseNet121 ResNet152 )

» .av

Layer I; Filter 23 Layer 1; Filter 26 Layer I; Filter 179 Layer 4; Filter 114 Layer 2; Filter 343 Layer 3; Filter 195 Layer 8; Filter 18  Layer 15; Filter 66  Layer 15; Filter 6 Layer(ll‘_.;!;nl;‘ii:ltge;)l."l) La%';;:g(;)ﬂl‘;;zr 169 Lay(ell;ii;e fli)llt;leg)“l Lay:{(g;) Esim984
\_ Initial layers y Intermediate layers N Final layer )
isruptin - i . . . . .
Distupting low-level filters requites Disrupting mid-level filters helps to learn Disrupting top-level overfits to
larger change in input image. Further ferabl bati . lassifier
it does not transfer well to top layer to transterable perturbations across SO.U’. Cc classihc .S
change the output prediction architectures decision boundaries
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Understanding the high transfer rates from ResNet152 to VGG16

(a) White-box attack on ResNet152 (Fooling Rate: 99.7%)
Original Unbounded Adv. Bounded Adv.

A = -
. W ONSINSATNTNE (o ff

Top 30 disrupted filters of ResNet152 Synthesized images of few top disrupted filters in ResNet152 (Layer 3)
y + N R | Top disrupted filters

are similar. Thus,
transfer rates are high
between from
ResNet152 to VGG-
16

Shift in magnitude
~
o o

e =
=)

T R
[ J | |
R L] T T T PR T
SITITTTTRTIR TR eeeendns
1234567B91011121314llS1617.13192021222324252627282930
Top disrupted filter

0.0

(b) Transfer attack from ResNetl152 to VGG16 (Fooling Rate: 99.1%)

Top 30 disrupted filters of VGG16 Synthesized images of few top disrupted filters in VGG16 (Layer 15
W A S NS =T Z) I s DT
o 3

i/, 2

e
=

o v & o o oS

Shift in magnitude

+...I, SR
LB l+| ’ 1171l rlor1.
1 B L N | 7
11T 7A|l+llll§+|.||.|..
1234567891011 12131415161718192021222324252 21282930
Top disrupted filter
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Visualization of unbounded adversarial images with feature
separation loss by attacking different layers on SqueezeNet

Input image

Contains textures Contains object-like
(highest transfer rate) patterns

Contains low-level edge
patterns

Unbounded
adversarial
image \
5 ' e ) g : R, < ‘- Rers “_/ "u
Layer 8 Layer 10 Layer 12 (Top layer)

Attacking top layers overfit to source classifier

while bottom layers require larger perturbation strength o
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Source

Source and Target
models are trained on
same ImageNet data but
differ in architecture
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Standard black-box transterability

(access to substitute model on target data & target data)

Fooling rate 1\
Gen. Training Discriminat VGG16 ResNet152 Inception-v3 DenseNet121 SqueezeNetl.1 A
data) I1IScriminator verage
( GAP [10]/ CDA [11]/ Ours
(VGG-16 ) 99.9*/99.8*/99.3* | 53.5/53.6/68.4 41.7/43.2/46.6 58.9/66.5/ 84.7 67.8/70.6/86.5 64.4/66.7/77.1
I Net ResNet152 03.2/96.8/99.1  97.6*/99.6*/99.7*  60.5/66.0/74.9 87.5/94.2/98.8 83.9/82.8/89.1 84.5/87.9/923
r?f‘%?w)e Inception-v3 88.2/97.2/99.0 83.4/82.7/90.4  96.5*/98.7*/99.6*  89.5/93.6/96.7 90.9/ 92.0/93.2  89.7/92.9/95.8
: DenseNet121 94.9/95.0/99.4 89.5/91.0/98.7 56.1/57.7/86.0  99.6*/99.6*/99.6*  79.7/81.5/95.6  84.0/85.0/95.9
SqueezeNet 88.0/91.5/96.1 50.4/57.1/76.4 48.0/47.6170.7 64.0/69.0/88.7  99.8*/99.7*/99.7* 70.0/73.0/86.3
Average 92.8/96.1/98.6 74.9/76.8/ 86.7 60.6 / 62.6 / 75.6 79.9/ 84.6 / 93.7 77.6/78.5/89.5  78.5/81.1/89.5 |

Strict black-box transterability

(access to substitute model on target data but no target data)

Gen. Training
(data)

Discriminator
( ImageNet)

VGG16

ResNetl152

Inception-v3

DenseNetl121

SqueezeNet 1.1

GAP [10]/ CDA [11]/ Ours

Average

4 )

Comics
(40K)

VGG-16
ResNet152
Inception V3
DenseNetl121
SqueezeNet

99.8/99.9/99.5
75.3/95.87/99.3
84.3/85.6/99.0
96.9 /87.8/796.5
87.7/89.9/96.5

54.3/540/77.4
97.6/98.1799.6
97.2/97.3/90.4
98.0/55.7/93.0
54.0/58.2/79.0

45.8/45.2/61.9
31.7/66.5/7/73.1
99.8/99.8/ 99.6
83.1/48.5/82.5
51.2/51.4/75.4

66.3/64.2/93.6
45.1787.7798.6
88.5/87.9/96.7
99.4/97.7/98.8
68.7/76.3/790.2

70.77/68.4/93.4
67.3786.0790.7
82.4/82.3/793.2
78.3/81.2/91.9
99.7/99.8/99.7

67.4/66.3/85.1
63.47/86.8792.3
90.5/90.6/95.8
91.2/74.2792.5
72.3/75.1/788.2

Average

88.1/91.8/98.2

80.2/72.6/87.8

62.3/62.3/78.5

73.6/82.8/95.6

7976 /83.6/93.8

79.9/78.6 /90.8

Paintings
(80K)

VGG-16
ResNet152
Inception V3
DenseNetl121
SqueezeNet

99.4/99.9/99.0
80.4/89.9/98.7
80.3/80.5/98.6
87.6/86.5/96.2
82.8/80.7/95.2

41.1/57.6/ 66.6
95.4/97.5/99.4
95.8/96.4/88.2
80.1/81.2/90.9
46.0/46.0/73.4

36.5/46.6/50.0
50.7/62.1/72.8
99.6/99.6 / 99.5
51.4/50.4/76.0
44.5/47.4/7171.0

50.8/73.8/84.6
70.4/82.3/97.9
87.7/87.2/795.2
08.8/98.9/ 974
59.3/56.5/87.2

63.7/73.0/86.4
70.4/81.1/89.2
77.57/72.8/790.8
73.6/73.77/91.7
99.4/99.3/99.6

58.3/70.1/77.3
73.5/82.6/91.6
88.2/87.3/94.5
67.7/78.1790.5
66.4/66.0/85.3

Average

86.1/87.5/97.6

71.7/775.8/83.7

56.5/61.2/73.9

73.4/79.7/92.5

76.9/80.0/91.5

72.9/76.8 \87.8

ChestX
(10K)

VGG-16
ResNet152
Inception V3
DenseNetl121
SqueezeNet

78.7/85.6/93.3
39.9/44.8/56.4
56.0/50.3/91.6
42.8/42.3/64.0
51.7/51.1/81.1

23.2/23.3/41.8
27.0/253/62.8
35.9/32.0/69.5
26.4/25.2/44.2
279/31.6/52.5

25.5/27.9/31.3
28.2/25.7727.7
44.4/35.1/84.9
28.0/28.8/34.0
30.2/33.1/47.1

27.57/28.2/53.4
25.9/726.6/38.1
459/35.4/77.4
41.9/48.2/76.0
31.6/35.1/64.2

46.1/48.0/64.3
449/ 47.1/7 60.5
65.1/57.7/75.6
54.2/48.8/760.2
81.3/78.9/96.4

40.2/42.6/56.8
33.2/33.9/49.2
49.5/42.1/79.8
38.7/38.7/55.7
44.5/46.0/68.3

Average

53.8/54.8/77.2

28.1/27.4/54.2

31.3/30.1/45.0

34.6/34.7/61.9

58.3/56.1/71.4

41.2/40.6 /62.0 |

Fooling rate]
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Source| | Target

Source and Target
models are trained on
different data and also
differ in architecture

Extreme Cross-domain Transferability

(neither access to substitute model on target model nor target data)

Target models on CUB200

[ Gen. 'D‘ainina[ Discriminato) hesNet50 SeNEt154 SeResNet101 ] Average
(data) ( ImageNet) GAP [209] / CDA [188] / Ours
VGG-16 41.25 / 2459 / 76.15 41.44 / 30.43 / 45.82  29.75 / 23.01 / 35.85 37.48 / 26.01 / 52.61 |
ImageNet ResNet152 54.82 / 52.78 / 93.18 50.76 / 50.72 / 77.44 46.00 / 45.13 / 65.00 50.35 / 49.54 / 78.54
(1g2M) Inception-v3 40.78 / 55.63 / 70.40 33.07 / 36.49 / 48.10 35.12 / 36.59 / 39.52 36.32 / 42.90 / 52.67
’ DenseNet121 52.95 / 50.97 / 90.66 38.52 / 43.42 / 73.30 45.36 / 46.10 / 63.07  45.61 / 46.83/ 75.68
SqueezeNet 36.40 / 35.57 / 63.89 34.04 / 25.55 / 47.32  34.57 / 30.51 / 39.39  35.00 / 30.54 / 50.20
\_ j\Average J  45.13 / 43.91 / 78.86 39.57 / 37.32 / 58.40  38.16 / 36.27 / 48.57 40.95 / 39.17 | 61.94
| (a) CUB200 |
Gen. Training Discriminator ResNet50 SeNEt154 SeResNet101 Average
(data) ( ImageNet) GAP [209] / CDA [188] / Ours
VGG-16 18.07 /48.65 / 70.22 32.35 / 30.03/ 32.41 12.66 / 14.76 / 21.73 21.03 / 31.15 / 41.45
ImageNet ResNet152 37.08 / 71.27 / 94.80 33.25 / 34.31 / 62.74 22.73 / 31.51 / 62.23 31.02 / 45.70 / 73.26
(1 %M) Inception-v3 51.27 / 44.12 / 44.34 35.63 / 36.25 / 38.59 31.68 / 25.43 / 25.83 39.53 / 35.27 / 36.25
’ DenseNet121 59.84 / 57.46 / 98.32 28.98 / 34.09 / 65.27 24.71 / 25.43 / 71.76 37.84 / 38.97 / 78.45
SqueezeNet 26.07 / 30.32 / 85.33 17.09 / 16.06 / 31.69 14.40 / 18.19 / 31.54 19.19 / 21.52 / 49.52
Average 38.47 / 50.36 / 78.60 29.46 / 30.15 / 46.14 21.24 / 23.05 / 42.62 29.72 / 34.52 ,[55.79]
(b) Stanford Cars
Gen. Training Discriminator ResNet50 SeNEt154 SeResNet101 Average
(data) ( ImageNet) GAP [209] / CDA [188] / Ours
VGG-16 25.20 / 23.97 / 79.36  46.77 / 38.79 / 37.28 36.15 / 27.42 / 38.16 36.04 / 30.06 / 51.60
ImageNet ResNet152 42.87 / 64.45 / 96.82 49.02 / 53.35 / 91.63 36.72 / 56.80 / 86.44 42.87 / 58.20 / 91.63
(1ag2M) Inception-v3 49.38 / 43.95 / 72.61 54.25 / 35.25 / 59.41 46.28 / 43.11 / 42.87 49.97 / 40.77 / 58.30
’ DenseNet121 37.11 / 37.05 / 93.10 38.73 / 41.04 / 88.30 35.22 / 36.93 / 83.59 37.02 / 38.34 / 88.33
SqueezeNet 26.07 /33.63 / 82.30 27.18 / 27.57 / 41.70 38.40 / 42.78 / 52.51 30.55 / 34.66 / 58.84
Average 36.13 / 40.61 / 84.84 43.19 / 39.20 / 63.66 38.55 / 41.41 / 60.71 39.29 / 40.41 § 69.74
Fooling rate| (c) Aircraft

Avg, 23%
improvement

over CDA
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Source

Source and Target
models are trained
on different data,
task and also differ
in architecture

Cross-task transterability analysis

(ImageNet classifier ——PASCAL VOC SSD detector)

No access to target data, target model and target task

mAP?
Gen. Training Discriminator | VGG16 ResNet50 EfficientNet MobileNet-v3 Average
(data) (Trained on ImageNet) GAP [10] / CDA [l 1] / Ours
- No Attack 68.12 66.08 61.07 55.44 62.68

4 /VGG-16 N\ 19.9/252/9.08 15.7/209/13.7 12.4/13.4/142 9.22/13.1/145 14.3/18.1/}10.1
Comics ResNet152 31.0/253/13.7 23.0/20.2/10.5 239/17.3/122 179/14.0/8.37 24.0/19.2/]11.2
(40K) Inception-v3 33.2/33.8/23.7 279/27.7/25.1 31.1/30.7/22.0 20.2/18.7/18.4 28.8/27.7/122.3
DenseNet121 22.1/263/12.2 18.6/21.6/145 17.8/20.1/16.2 13.9/153/9.55 18.1/20.8/]13.1
SqueezeNet 29.4/32.6/18.1 24.8/289/15.7 20.5/244/17.7 15.7/20.5/11.9 22.6/26.6/]15.9
Average 27.1/287/15.4 220/23.8/15.9 21.1/21.2/16.5 154/163/11.7 21.4/22.5//14.9
VGG-16 20.2/20.4/9.83 21.4/225/13.2 147/150/12.8 11.4/125/12.8 169/17.6//12.2
Paintines ResNet152 36.6/29.4/12.8 26.7/21.9/125 229/168/11.8 21.3/17.6/9.40 26.9/21.4/11.6
(80K)g Inception-v3 32.3/33.5/16.8 29.2/29.0/18.7 28.1/285/14.3 23.4/22.6/13.2 28.3/28.4/]15.7
DenseNet121 31.7/33.2/9.27 23.1/23.2/11.0 23.5/24.1/10.6 20.2/20.9/6.53 24.6/25.3/9.35
SqueezeNet 35.3/359/17.0 285/29.0/13.7 26.7/27.5/17.1 21.0/21.1/8.77 27.9/28.3/}14.1
Average 31.3/30.5/13.1 25.8/25.1/13.8 23.2/224/13.3 195/189/10.1 25.0/24.2//12.6
VGG-16 17.8/15.5/827 19.2/139/11.8 9.64/891/ 11.1 839/5.79/9.78 13.7/11.0/}10.2
ResNet152 19.0/16.6/9.23 13.5/14.6/7.67 12.5/11.7/6.56 12.4/7.67/4.29 14.3/12.6/6.94
ImageNet Inception-v3 13.0/22.1/155 15.7/194/18.2 13.8/12.5/13.5 11.3/15.1/11.6 15.6/17.3/]14.7
(1.2M) DenseNet121 21.5/16.1/7.60 15.7/13.7/8.32 13.8/11.4/7.73 11.3/7.10/4.42 15.6/12.1/7.02
SqueezeNetl 27.7/26.6/13.5 23.7/225/10.8 18.6/23.4/11.8 15.2/17.2/7.40 21.3/22.5//10.9
\_ \Average ) 19.8/19.3/108 17.5/16.8/11.4 13.5/13.6/10.1  12.1/10.6/7.50 15.7/15.1/]9.95
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Adversarial Attacks

* Attacks beyond image recognition
* White-box attacks on semantic segmentation
* Black-box transfer attacks on visual object tracker

* Why adversarial attacks transfer?
* Learning transferable transterable perturbations

* How can we use adversarial attack to improve DNNs
* Semantic adversarial attacks to study disentanglement
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Goal: Semantic attacks to study
disentanglement of pose and appearance

What 1s disentanglement?
Disentangled representations capture independent factors
of variations in data

Why do we need 1t?

Disentangled representations improves the performance of
downstream tasks with limited supervision



Background: Self-supervised Disentangled Representations
( one technique using multi-view information)

Approach: Take one view as input and reconstruct the other view as output

appearance
image || image
encoder W R ] decoder
BNy
at same time
instant GT: View 1 | [ Predicted: View2
pose pose rotated

Rotate from view 1

to view 2
Downstream pose-

related tasks can be Y

learned with limited - > L,
supervised data using GT: View 2
GT: View 2 shallow models No labels are used during self-supervised training

NSD [Helge et al. CVPR 2019]



Analyze the disentanglement of pose and appearance

— Hypothesis

Given two disentangled latent codes that capture two underlying factors of
variation 1n the mput data, the adversarial modification of one factor in the
input image should not alter the latent code encoded by another factor

Example of pose-appearance disentanglement

Same pose code Same appearance code




Semantic appearance attacks to understand the
disentanglement of pose and appearance

appearance
appearance u

Y| | ] ose
SNCOJCr mumm——— decoder encoacr —>> p 9

decoder

Normal pose

Normal input Normal synthesized

pose

image image
Optimise the latent code of appearance
while fixing the pose code
Optimized appearance
appearance ghi

1mage
encoder POSC N
decoder

Freez Freeze

Freeze

Freeze Adversarial pose

POSEC )

Adversarial image

pose




Qualitative results to show the disentanglement is incomplete

(c) Adversarial (b) Normal  (a) Input

(d) GT

(f) Adversarial () Normal

NSD

ﬁDRbkt

CSSL

. i
#
1
i
K
R

A testbed to evaluate the
disentanglement of pose
and appearance

Potential connection
between disentanglement
and robustness



Conclusion

* Adversarial attacks have signficant implication in the world of self-driving cars.

* Results of indirect attack to fool far away dynamic objects are unsettling

* Black-box attacks are more realistic threat setting than white-box setting

* Transferable perturbations in cross-model, cross-domain and cross-task setting

* Interpretable models to reveal working mechanism of adversarial attacks and
to improve robustness

e BoW networks for adversarial attack detection

* Attention-based BoW networks with metric learning for defending to attacks
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Questions?

I ? I

O
KKN & MS, ECCV20
KKN & MS, NeurIPS21 KKN & MS, ICCVW19
KKN & MS, arXiv21 KL, KKN, PF & MS, ICCV19
O KKN & MS, arXiv2?2

KKN & MS, BMVC18 KKN & MS, ACCV20
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Higher is better

Black-box Square

Accuracy (%)

Accuracy (%)

Robust VGG16
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(d) VGG16

attacks on adversarial trained models
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(e) VGG19
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Y-axis is accuracy, and x-axis 1s query budget for Square attack



Similar intuition for OOD detection:
Out-of-distribution (OOD) input activates a different looking prototype

Eg O O O Training embeddings

Sample test image ® ® ® Prototypes
from Omniglot

D: Siamese network to predict if the input pair

1s similar or dissimilar trained on In-distribution dataset
dataset o
Cl - D < gg >
ciﬁo D
Dissimilar
Visual representation of \

closest prototype trained

on In-distribution dataset [ OOD SampleJ




Road Anomaly detection

Pixel-level detection of anomalous objects by comparing input image to the
image resynthesized from output map

semantic segmentation

(b)

GAN resynthesis

(d)

detecting differences ¥

Pretrain the discrepancy detector network on real and synthesised images by
randomly replacing objects of few classes with other classes

KL, KKN. PF & MS. ICCV19]



Road Anomaly detection

Pixel-level detection of anomalous objects by comparing input image to the
image resynthesized from output map

Real predictions Randomly alter labels of few instances

Discrepancy network

input image resynthesized image predicted labels
L am e g

VGG 16 shared weights VGG 16
features features

discrepancy

concat | | 3 score
conv 1x1 )
= ’
| &

Outlines of altered objects Resynthesized image

Pretrain the discrepancy detector network on real and synthesised images by
randomly replacing objects of few classes with other classes

KL, KKN. PF & MS. ICCV19]



Adversary detection beyond image-recognition

Adversarial example detection in semantic segmentation by comparing input image to the image
resynthesized from output map

[ N

E Segmentation
—_—
Network

Input image

Predicted map

Similar

—

— ||| G

No attack!

Pix2pix
(labels to image)
D: Computes L distance in HOG feature space KL, KKN. PF & MS. ICCV19]

Resynthesized image



Adversary detection beyond image-recognition

Adversarial example detection in semantic segmentation by comparing input image to the image
resynthesized from output map

\

[ N

Segmentation
Network

\ )

-
Predicted map
(labels flipped)

Adversarial image
Dissimilar

—

G

Attacked!

Pix2pix
(labels to image)
D: Computes Ly distance in HOG feature space [KI., KIKN. PF & MS, ICCV19]

Resynthesized image



No;mal synthsized Normal predictions Adversarial synthesized Adversarial redictions
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Visually

correlated

Visual correlation b/w adversarial images & top disrupted filters

(a) Generator trained against VGG16

Boxplot of top 30 disrupted filters in layer 18 of VGG16

140

Shift in magnitude
B
B @ o N
o o O o o

N
o ©

Final projected adversar

LTI PP PPEF PR

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Top disrupted filter

oes of top disrupted filters in VGG16

3%

ial images with VGG16

(b) Generator trained against SqueezeNet

Boxplot of top 30 disrupted filters in layer 10 of SqueezeNet

1400

© 1200

Shift in magnitud
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N
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=)
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1234 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Top disrupted filter

Synthesized images of top disrupted filters in SqueezeNet
FND 2N 3t S A B RV

Visually

correlated
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