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Motivation
Understanding the behavior of  DNNs in safety and 

security-critical applications is paramount

Biometric recognition Scene segmentation Object localization

Health-care applications Self-driving cars 2



Adversarial Examples (AE)
DNNs are sensitive to imperceptable perturbations 
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Key properties of  adversarial examples
• Small perturbation
• High confidence
• Transferability

Szegedy et al. arXiv 2013



DNNs performance drops signficantly 
with single step FGSM attack
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Perturbation norm set to 8. 
Results are reported on ImageNet validation set



Implications of  adversarial attacks against 
autonomous vehicles
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A unifying perspective of  thesis

1.Understand the underlying working 
mechanisms of  adversarial attacks on 

DNNs

2. Design adversarial attacks to both fool 
and explain the DNNs 
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Adversarial 
Attacks 

Adversarial 
Defense

Interpretable 
models

Focus areas
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In order to build trust in safety-critical systems, we need to 
build transparent models that have the ability to explain 

why they predict what they predict  

Our work focuses on Bag-of-visual words (BoW) 
pooling architectures to understand the decisions 

of  DNNs
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Standard DNN architectures are difficult to understand 
how they reach to their decisions

Meeting 
room

presence of  table, board,
chairs, light bulb indicates
meeting room class

Instead of  GAP,  replace with learnable BoW pooling layer to 
learn interpretable representation

Fully connected
representation

GT: Meeting room

Input image
(scene recognition dataset)

Non-Interpretable

FC
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NetBoW: DNN with distance-based learnable pooling layer

Network learns the 1. weights of  
backbone, 2. prototype centers 

(c1, c2, c3), and 3. FC layer jointly

K-Prototypes

h(I) 
K-dimensional
(Interpretable)

presence of  table, board,
chairs, light bulb indicates
meeting room class

GT: Meeting room

I: Input image
(scene recognition dataset)

Compute the distance 
between local feature and 

prototype center
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Training image

Training image Training image

Training image

Test image

h(x): Bag of  word vector

FC Flower

Advantage: Interpretable BoW representation

BoW 
pooling

𝑓(. )

𝑓(. )

𝑓 𝑥 denotes the feature 
extracted from the 

backbone network for 
image 𝑥

Flower

Bird

𝑓(. )

𝑓(. )

𝑓(. )

Embeddings

GT: Flower 12



Interpretability by Design

BoW Networks are interpretable since one can understand the 
reasons for particular output decision through the prototype 

activations and not in post-hoc manner
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Diagnose the failure modes such as adversarial 
examples, out-of-distribution examples and 
analyze them more naturally and intrinsically



After training, assign the 
nearest training image whose 
embedding is closest to the 
prototype

What does prototype represent in input image space?
Training embeddings
Prototypes

Training image

Assign this visual 
representation to prototype

nearest

14



NetBoW helps to understand the reasons for a 
label prediction through visual codebook

Input images

Highest activated prototype

MNIST FMNIST CIFAR10

MNIST FMNIST CIFAR10
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Can we understand the mechanism of  adversarial examples 
through interpretable models in a better way?

Training embeddings
Prototypes

Adversarial imagePerturbation (BIM)

Clean image

The feature embedding moves away 
from prototype of  clean label and comes 
closer to prototype of  adversarial label

Pred: Flower

Pred: Aeroplane

16



Key idea
Adversarial attacked image should activate the prototype of  other class. Therefore, we 
detect the attacks by comparing the input image with the visual representation of  
activated prototype through an auxiliary detector network

How can we use the interpretable BoW networks
to detect the adversarial examples

Adversarial images

Activated prototypes

Impact:

17
[KKN & MS, ICCVW19]



Dissimilar Attack

D( ,    )D( ,    )Similar No attack

Adversarial example detection: pose the problem as similarity 
matching of   input image to highest activated  prototype

D: Siamese-based  detector to predict if  the input pair is similar or dissimilar

Query clean image

Closest prototype

Query Adversarial image

Closest prototype

Training
Prototypes

18

Similar approach 
can be used to 
detect out-of-
distibution 
examples



Is the detector robust to attacks all the time? 

• No. Detector breaks down with our defense-aware adaptive attack in 
pure white box setting (aware of  detector weights and stratefy)

• However, the approach works in gray-box (adversary aware of  
defense mechanism) and black-box setting (no access to detector 
weights) wrt detector

19



D(      ,       )
No attack!

Input image Predicted map 

Resynthesized image

𝐺

Pix2pix
(labels to image)

Adversary detection beyond image-recognition
Adversarial example detection in semantic segmentation by comparing input image to the image 

resynthesized from output map

Segmentation 
Network

[KL, KKN, PF & MS, ICCV19]D: Computes L1 distance in HOG feature space

Similar
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D(      ,       )
Attacked!

Adversarial image 

Resynthesized image

𝐺

Segmentation 
Network

[KL, KKN, PF & MS, ICCV19]D: Computes L1 distance in HOG feature space

Dissimilar
Predicted map 
(labels flipped) 

Adversary detection beyond image-recognition
Adversarial example detection in semantic segmentation by comparing input image to the image 

resynthesized from output map

Pix2pix
(labels to image)
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Downside: all features participate in the feature 
aggregation step of  BoW pooling 

Test image 
(GT: Laundry room)

Meeting
room

FC

Training image

Training image Training image

Training image

BoW 
pooling

𝑓(. )

person

laundry

h(x): Bag of  word vector 23



Key idea: attention-aware pooling
By introducing the attention during the feature aggregation process, the BoW
representation becomes more discriminative 

Laundry room
FC

Meeting room
FC

Without attention With attention

GT: Laundry room GT: Laundry room

Impact: 

person

person laundry

laundry

Remove the influence of  non-discriminative regions. How?

[KKN & MS, BMVC-18]
24



Key idea: introduce attention in BoW pooling to 
remove contribution of  non-discriminative features

[KKN & MS, BMVC-18]

Input image
(GT: Laundry 

room)

Laundry 
room

Laundry 
room

Maximum 
along 

channel

25

K-prototypes

K

K-dimensional



•

Attention ignores the non-discriminative regions (such as the person which is 
common across classes) and focuses on discriminative regions of  the output class

Attention 
map

Input 
image

26



By incorporating attention, we can significantly improve 
the discriminative power of  BoW latent representation

[KKN & MS, BMVC-18]

Accuracy 

Attention helps 
the most in 
BoW pooling

8%

4%
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The reasons for success of adversarial attacks in 
fine-grained datasets has lot of subtleties 

Benefits with fine-grained datasets
• Understand the DNNs workings at local patch level instead of  global object level
• More sensitive to attacks since local perturbations can change the label

Example images  of  some 
confusing classes 

C
or

m
or

an
t

C
ro

w
Te

rn
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ProtoPNet: Classify image based on evidence 
from local patches

15.20

8.20

0.95

Yellow box denotes the visual representation of   prototype patch 
along with full training  image from which the patch is extractedProtoPNet [Chen et al. NeurIPS 2019]

Weights are +1 or  -0.5 
depending on label of 
prototype and logit
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Prototypes of  first 12 classes in CUB200

t-SNE visualization of learned prototypes
(Digging deeper: understanding reasons for success of attacks)

Foreground prototypes of  different classes 
of  same family are close to each other 

Class 0 : Blackfooted albatross 

Class 2: Sooty albatross

30



Class 3

Class 7

Background prototypes of  different classes 
are close to each other and therefore can 
be easily attacked to change from one class 
to other

Prototypes of  first 12 classes in CUB200

t-SNE visualization of learned prototypes
(Digging deeper: understanding reasons for success of attacks)
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Prediction:
Rhinceros Auklet

Prediction:
Blackfooted Albatross

Ground Truth:
Blackfooted Albatross

Adversarial

Clean

An intuitive example to understand the success of 
adversarial attacks on ProtoPNet

BG

BG

FG

FG

FG
FG

32



Intuition
If  we can maximally separate the latent features of  foreground (discriminative) regions 
of  different classes  and also remove the  influence of  background regions in the 
decision process, then we have made the attacker task difficult  to conduct attacks 

How can these observations help to improve the robustness? 
maximal separation of discriminative features

33
[KKN & MS, ACCV20]

1. Attentional cluster loss - pulls the high-attention regions in a sample close to the 
nearest prototype of  its own class

2. Attentional separation loss - pulls the high-attention regions in a sample away 
from the nearest prototype of  other class



Attention-aware architecture

34

1. Attentional Cluster loss
2. Attentional Separation loss

[KKN & MS, ACCV20]

M
od

ul
at

io
n

removes contribution 
from backgrond prototype



Our method yields well-separated foreground prototypes while 
clustering background prototypes 

Background prototypes do 
not participate in decision 

process by attention

GT: Blackfooted
albatross

Prediction:
Blackfooted
Albatross

Prediction:
Blackfooted
Albatross

Adversarial

FG

BG

FG

BG

different 

class

Normal
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Visualization of  learned Prototypes
(our prototypes are fine-grained and complete non-discriminative regions 

activated by background prototype)

36



Our adversarial training strategy with novel losses consistently 
achieves higher performance against white-box attacks

Accuracy 

37



Black-box auto-attack ensemble 
on adversarial trained models

38

𝜖=8

Accuracy 



Adversarial 
Defense 

Adversarial 
Attacks

Interpretability

Focus areas
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Adversarial Attacks

40

• Attacks beyond image recognition
• White-box attacks on semantic segmentation
• Black-box transfer attacks on visual object tracker

• Improving the transferability of  attacks
• Learning transferable transferable perturbations

• How can we use adversarial attack to improve DNNs
• Semantic adversarial attacks to study disentanglement



Exploiting context to understand 
the susceptibility of  DNNs for 

Semantic Segmentation

41



no-context heavy

FCN, Jonathan et al. CVPR15 

Understanding context is the core building block in modern segmentation networks 

PSPNet, Jonathan et al. CVPR18 

Pyramid Scene Parsing

DANet, Jonathan et al. CVPR19 

Dual (Spatial and channel) Attention

Point-wise Spatial Attention

PSANet, Jonathan et al. ECCV18 

Context

Fully Convolutional Network

42



Key finding
We discover that context empowers the attackers to fool objects far away from the
perturbed area.  For example, a perturbation of  size 4% of  image area fools the 
prediction at 60% of  image area for PSANet.

Exploiting context in semantic segmentation models

Image perturbed with 9% Clean prediction Adversarial prediction 43

[KKN & MS, ECCV20]



[KKN & MS, ECCV-20]

Perturbing static regions (e.g., road, sidewalk) affects the predictions at 
far away dynamic regions (e.g., bus, pedestrians) in inconspicuous way 

Clean image Clean predictionsAdversarial image

Indirect local attack 
in red box regions

Adversarial predictions

Fools the distant 
dynamic objects

44

Realistic-looking segmentation map



PSANet PSPNet DANet

FCNClean segmentation

Context-aware networks are highly vulnerable to indirect 
attacks than FCN

Adversarial image with local perturbations

45



Adversarial image Clean predictions Adversarial predictions

Perturbed 
inside red 
boxes 46

Indirect adaptive attack results



Another perspective: Indirect attacks helps to understand contextual 
dependencies in DNNs (e.g. sky-aeroplane, road-car, road-bus)

47

Adversarial image Normal predictionPerturbation Adversarial prediction



Transferable Adversarial Examples
(Perturbation generated from one network transfers to other network)

48

Source model
(White-box attack 

generation)

Target model

Transferable perturbations require no access to the target model

Gibbon
(wrong)

Black-box scenario
(Zero-query)



Adversarial Attacks
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• Attacks beyond image recognition
• White-box attacks on semantic segmentation
• Black-box transfer attacks on visual object tracker

• Improving the transferability of  attacks
• Learning transferable transferable perturbations

• How can we use adversarial attack to improve DNNs
• Semantic adversarial attacks to study disentanglement



Challenges in transfer-based black-box attacks on object trackers
(VOT takes template as input and detects it in all subsequent search images)

Novel objects at test time
(non-overlapping with training 

objects)

Computing perturbation per frrame 
should be efficient as trackers work at 

real-time

Should generalize to different tracker 
frameworks such as SiamCAR, 

SiamBAN, OCEAN

50

Frame 30Frame 0 Frame 20Frame 10



Key idea
We propose to learn to generate a single perturbation from the object template only,
that can be added to every search image and still successfully fool the tracker for the
entire video.

Goal: Efficient black-box attacks on visual object tracking

Impact:

Learns to generate powerful transferable perturbations on unknown videos and trackers 

51



Temporally-transferable perturbation generator

Design principles to improve transferability

1. Perturbation is generated from template only
2. Generated perturbation is shared across all search images

Percerptual loss 
b/w clean & 
adversarial 
image

Increase the 
confidence 
at target 
position

Decrease the 
confidence at 
predicted 
position

Target location mask

52



Visualization of  generated 
directional perturbations

Generated perturbation contains adversarial object-like 
patch at target position

Target bounding box 
offset from the center

53

+

Magnitude amplified for the sake of  visualization



Targeted adversarial attacks to steer the target 
tracker to follow the object  at a fixed offset

Adversarial 
target

Ground 
truth

Adversarial 
prediction

Using 12 precomputed directional perturbations
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Our transfer-attacks are highly efficient 
and effective too

Performance of  Ours (Universal perturbation generated from single 
fixed template) and Ours (TD) (perturbations generated from template 

of  given input video) method are at same range 

S: Success;  P: Precision

Y-axis is tracker speed and x-axis is different tracker
frameworks

Our method do not 
degrade the original 
tracker speed

55

Generator trained on SiamRPN++ (ResNet50)

CSA(T)

CSA (S)

CSA(TS)

Normal



Adversarial Attacks
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• Attacks beyond image recognition
• White-box attacks on semantic segmentation
• Black-box transfer attacks on visual object tracker

• Improving the transferability of  attacks
• Learning transferable transferable perturbations

• How can we use adversarial attack to study DNNs
• Semantic adversarial attacks to study disentanglement



Understanding and Improving the 
Transferability of  Generative 

Adversarial Perturbations

57



Learning Transferable Adversarial Perturbations

We investigate the transferability of  generative perturbations when the 
conditions at inference time differ from the training ones in terms of  

Generator was trained to attack a VGG-16 but the target 
network  is a ResNet152

Generator was trained using the Paintings dataset, but the 
test data comes from ImageNet

Generator was trained to attack an image recognition 
model but faces an object detector at test time

58

1. Target architecture

2. Target data

3. Target task

58



Now let’s take a step back and see how deep neural networks 
build up their understanding of  images?

Credit: https://distill.pub/2017/feature-visualization

Bottom layers Top layers

59
Inception filter visualization

https://distill.pub/2017/feature-visualization/appendix/
https://distill.pub/2017/feature-visualization/appendix/


Key idea
Disrupting the mid-level features using feature separation loss empowers attackers
to learn perturbations with high transfer rates across target architectures, target 
datasets and target tasks without any queries

Learning Transferable Adversarial Perturbations

Most prior works in transfer-based
black-box attacks focus on only unknown

architecture 

Our work focuses on 
black-box attacks on unknown 

architecture, data and task

60
[KKN & MS, NeurIPS21]



Training a perturbation generator with 
mid-level feature separation loss

61

Bounded Unbounded 

Target data

Source modelSource data

Target model

61

Target task

Source task



CNNs with different architectures share similar filter bank

Disrupting mid-level filters helps to learn 
transferable perturbations across 

architectures

62

Edges, colors Textures Object Patterns

Disrupting top-level overfits to 
source classifier’s

decision boundaries

Disrupting low-level filters requires 
larger  change in input image. Further 
it does not transfer well to top layer to 

change the output prediction 

62



63
Understanding the high transfer rates from ResNet152 to VGG16

Top disrupted filters 
are similar. Thus, 
transfer rates are high  
between from 
ResNet152 to VGG-
16
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Visualization of  unbounded adversarial images with feature 
separation loss by attacking different layers on SqueezeNet

Input image

Unbounded
adversarial 

image

Layer 2 Layer 5 Layer 8 Layer 10 Layer 12 (Top layer)

Attacking top layers overfit to source classifier 
while bottom layers require larger perturbation strength 64

Contains low-level edge 
patterns

Contains object-like
patterns

Contains textures
(highest transfer rate)



Standard black-box transferability
(access to substitute model on target data & target data)

65

Strict black-box transferability 
(access to substitute model on target data but no target data)

Fooling rate

Fooling rate

Source Target

Source and Target 
models are trained on 

same ImageNet data but 
differ in architecture
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Extreme Cross-domain Transferability 
(neither access to substitute model on target model nor target data)

66

Avg. 23% 
improvement

over CDA

Fooling rate 

Target models on CUB200 

Source Target

Source and Target 
models are trained on 
different data and also 
differ in  architecture
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Cross-task transferability analysis
(ImageNet classifier         PASCAL VOC SSD detector)
No access to target data, target model and target task 

mAP

Source Target

Source and Target 
models are trained 
on different data, 

task and also differ 
in  architecture
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Adversarial Attacks

68

• Attacks beyond image recognition
• White-box attacks on semantic segmentation
• Black-box transfer attacks on visual object tracker

• Why adversarial attacks transfer? 
• Learning transferable transferable perturbations

• How can we use adversarial attack to improve DNNs
• Semantic adversarial attacks to study disentanglement



Goal: Semantic attacks to study 
disentanglement of  pose and appearance 

What is disentanglement?
Disentangled representations capture independent factors 

of  variations in data

Why do we need it?
Disentangled representations improves the performance of  

downstream tasks with limited supervision

69



No labels are used during self-supervised training

Background: Self-supervised Disentangled Representations
( one technique using multi-view information)

Approach: Take one view as input and reconstruct the other view as output

Rotate from view 1
to view 2

Downstream pose-
related tasks can be 
learned with limited 

supervised data using  
shallow models

70
NSD [Helge et al. CVPR 2019]

at same time 
instant



Hypothesis
Given two disentangled latent codes that capture two underlying factors of  
variation in the input data,  the adversarial modification of  one factor in the 
input image should not alter the latent code encoded by another factor

Analyze the disentanglement of pose and appearance

Example of  pose-appearance disentanglement

Same pose code Same appearance code
71



Semantic appearance attacks to understand the 
disentanglement of  pose and appearance

Optimise the latent code of  appearance
while fixing the pose code

Adversarial pose

Normal poseNormal input 
image 

Normal synthesized 
image 

Adversarial image

Maximise 
L1 loss

Freeze Freeze
Freeze

Freeze
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Qualitative results to show the disentanglement is incomplete

• A testbed to evaluate the 
disentanglement of  pose 
and appearance

• Potential connection 
between disentanglement 
and robustness



Conclusion
• Adversarial attacks have signficant implication in the world of  self-driving cars.
• Results of  indirect attack to fool far away dynamic objects are unsettling

• Black-box attacks are more realistic threat setting than white-box setting
• Transferable perturbations in  cross-model, cross-domain and cross-task setting

• Interpretable models to reveal working mechanism of  adversarial attacks and 
to improve robustness
• BoW networks for adversarial attack detection
• Attention-based BoW networks  with metric learning for defending to attacks 
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Interpretability Attacks Defenses Detection

KKN & MS, BMVC18

KKN & MS, ECCV20
KKN & MS, NeurIPS21
KKN & MS, arXiv21
KKN & MS, arXiv22

KKN & MS, ICCVW19
KL, KKN, PF & MS, ICCV19

KKN & MS, ACCV20

Questions?
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Black-box Square attacks on adversarial trained models

Higher is better

Y-axis is accuracy, and x-axis is query budget for Square attack 76

𝜖=8



Similar intuition for OOD detection: 
Out-of-distribution (OOD) input activates a different looking prototype

Sample test image 
from Omniglot 

dataset

Visual representation of  
closest prototype trained 
on In-distribution dataset 

Training embeddings
Prototypes

D( ,    )
Dissimilar      

D: Siamese network to predict if  the input pair 
is similar or dissimilar trained on In-distribution dataset

OOD sample
77



[KL, KKN, PF & MS, ICCV19]

Road Anomaly detection
Pixel-level detection  of  anomalous objects by comparing input image to the 

image resynthesized from output map

Pretrain the discrepancy detector network on real and synthesised images by 
randomly replacing objects of  few classes with other classes



[KL, KKN, PF & MS, ICCV19]

Road Anomaly detection
Pixel-level detection  of  anomalous objects by comparing input image to the 

image resynthesized from output map

Pretrain the discrepancy detector network on real and synthesised images by 
randomly replacing objects of  few classes with other classes

Real predictions Randomly alter labels of  few instances

Resynthesized imageOutlines of  altered objects

Discrepancy network



D(      ,       )
No attack!

Input image Predicted map 

Resynthesized image

𝐺

Pix2pix
(labels to image)

Adversary detection beyond image-recognition
Adversarial example detection in semantic segmentation by comparing input image to the image 

resynthesized from output map

Segmentation 
Network

[KL, KKN, PF & MS, ICCV19]D: Computes L1 distance in HOG feature space

Similar

80



D(      ,       )
Attacked!

Adversarial image 

Resynthesized image

𝐺

Segmentation 
Network

[KL, KKN, PF & MS, ICCV19]D: Computes L1 distance in HOG feature space

Dissimilar
Predicted map 
(labels flipped) 

Adversary detection beyond image-recognition
Adversarial example detection in semantic segmentation by comparing input image to the image 

resynthesized from output map

Pix2pix
(labels to image)

81



Normal synthesized Adversarial synthesized Adversarial predictionsNormal predictions
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Visual correlation b/w adversarial images & top disrupted filters
83

Visually 
correlated

Visually 
correlated
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