

PhD Thesis Defense

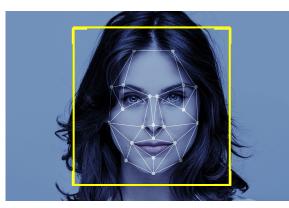
Understanding Deep Neural Networks using Adversarial Attacks

Krishna Kanth Nakka August 15, 2022

CVLab, EPFL

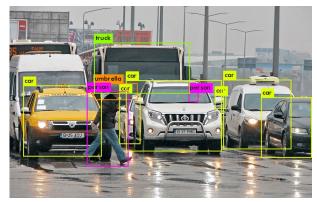
Motivation

Understanding the behavior of DNNs in safety and security-critical applications is paramount



Biometric recognition

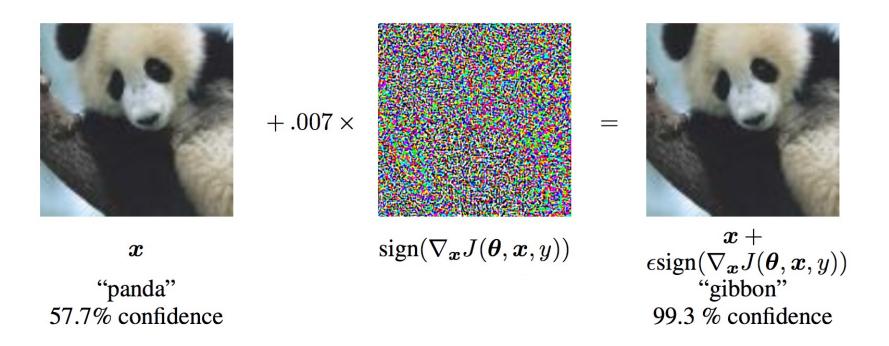
Scene segmentation



Object localization

Health-care applications

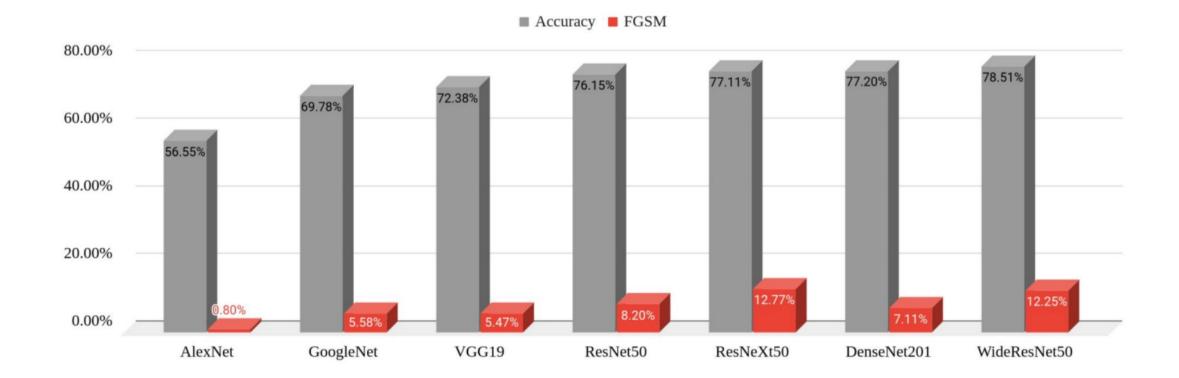
Adversarial Examples (AE) DNNs are sensitive to imperceptable perturbations



Key properties of adversarial examples

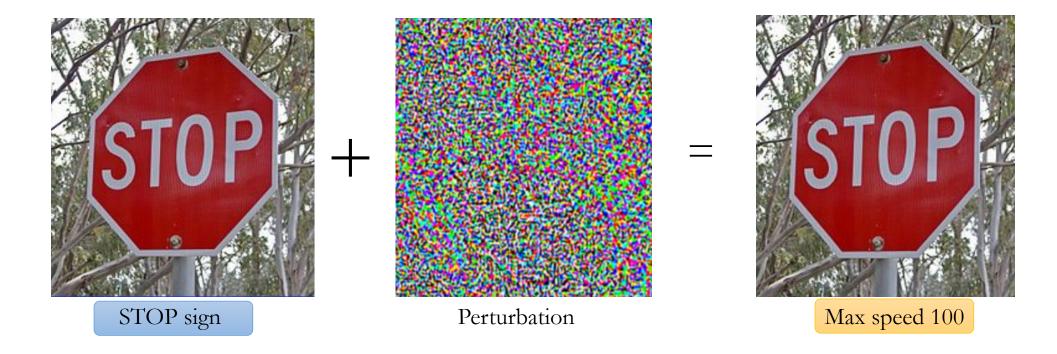
- Small perturbation
- High confidence
- Transferability

DNNs performance drops significantly with single step FGSM attack



Perturbation norm set to 8. Results are reported on ImageNet validation set

Implications of adversarial attacks against autonomous vehicles



A unifying perspective of thesis

1.Understand the underlying working mechanisms of adversarial attacks on DNNs

2. Design adversarial attacks to both fool and explain the DNNs

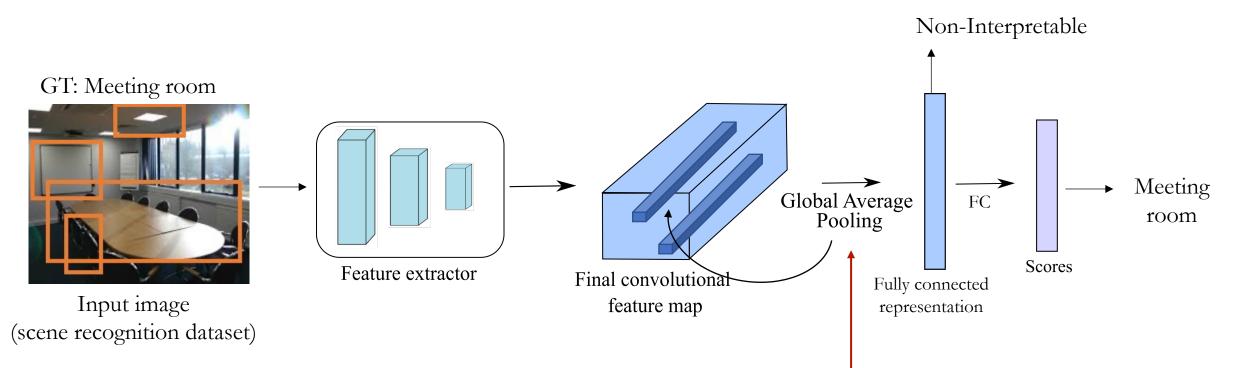
Focus areas

Focus areas

In order to build trust in safety-critical systems, we need to build transparent models that have the ability to explain why they predict what they predict

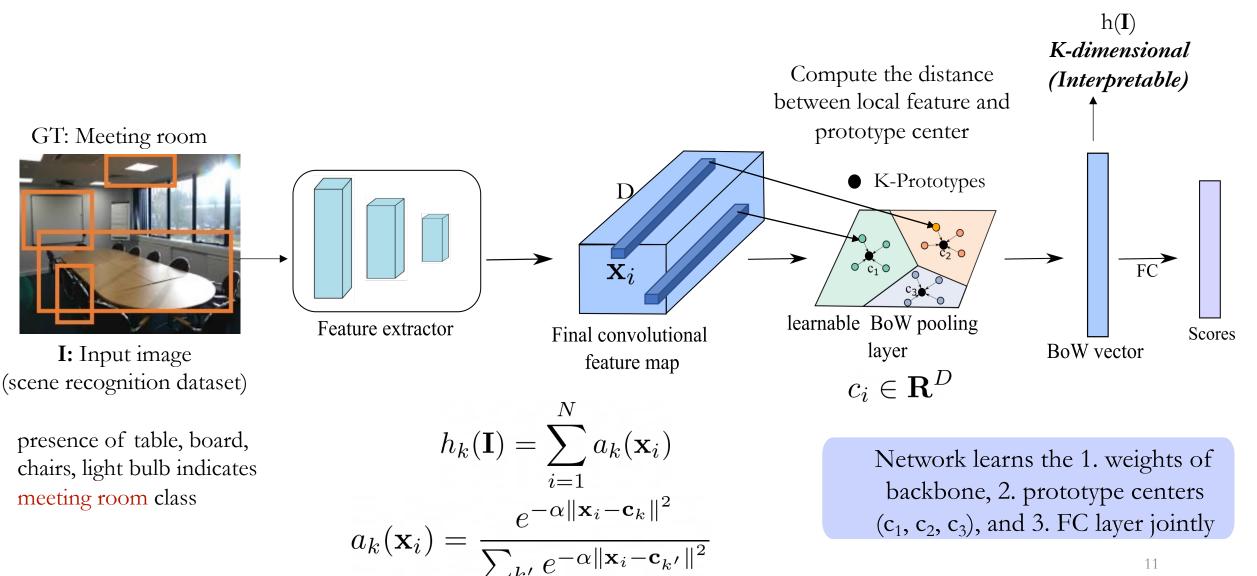
Our work focuses on **Bag-of-visual words (BoW) pooling** architectures to understand the decisions of DNNs

Standard DNN architectures are difficult to understand how they reach to their decisions

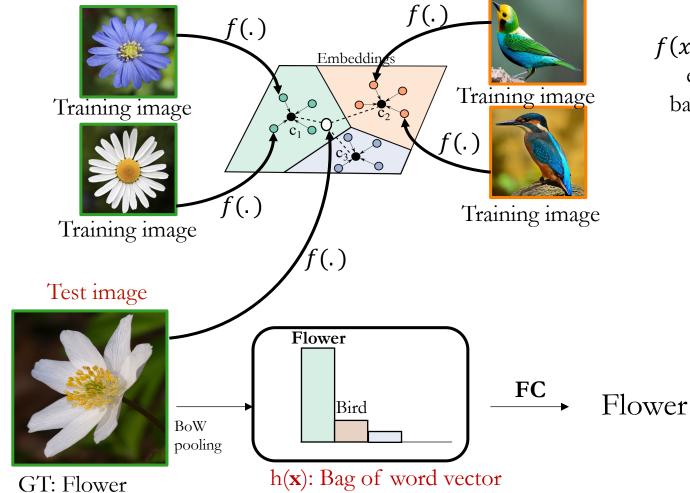


presence of table, board, chairs, light bulb indicates meeting room class Instead of GAP, replace with learnable BoW pooling layer to learn interpretable representation

NetBoW: DNN with distance-based learnable pooling layer



Advantage: Interpretable BoW representation



f(x) denotes the feature extracted from the backbone network for image x

Interpretability by Design

BoW Networks are interpretable since one can understand the reasons for particular output decision through the prototype activations and not in post-hoc manner

Diagnose the failure modes such as adversarial examples, out-of-distribution examples and analyze them more naturally and intrinsically

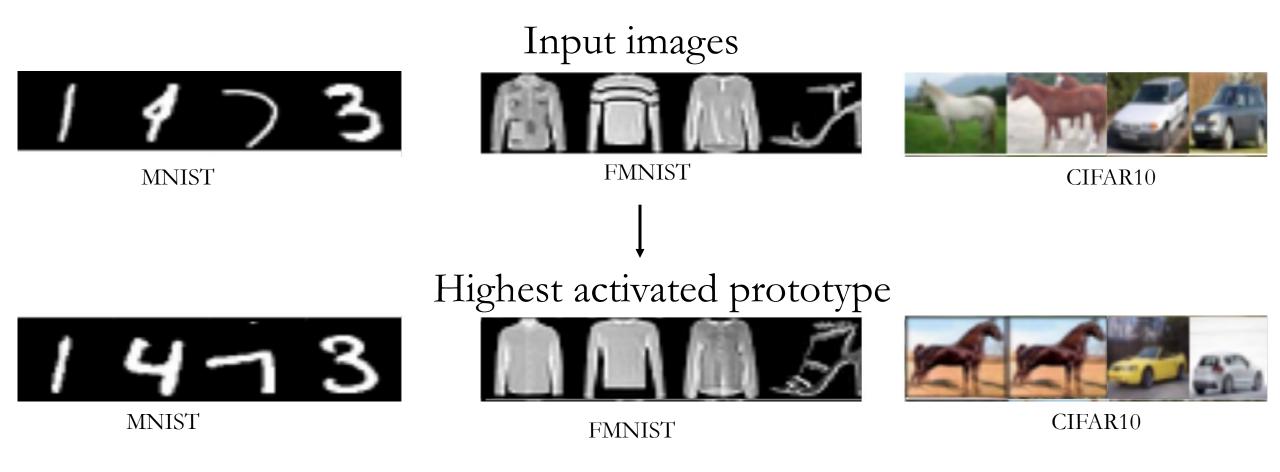
What does prototype represent in input image space?

After training, assign the nearest training image whose nearest embedding is closest to the prototype

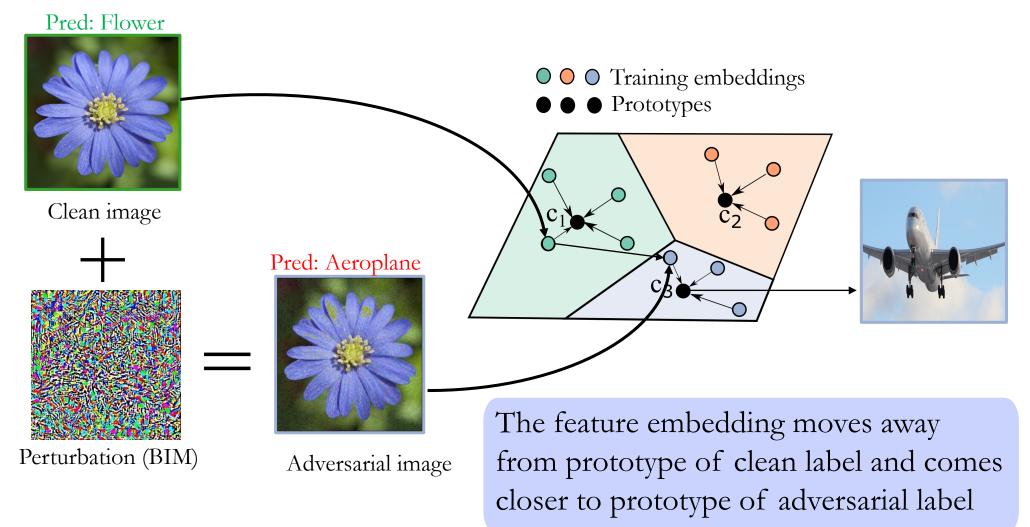
Training embeddings
Prototypes

Assign this visual representation to prototype

NetBoW helps to understand the reasons for a label prediction through visual codebook



Can we understand the mechanism of adversarial examples through interpretable models in a better way?



How can we use the interpretable BoW networks to detect the adversarial examples

Adversarial attacked image should activate the prototype of other class. Therefore, we detect the attacks by comparing the input image with the visual representation of activated prototype through an auxiliary detector network

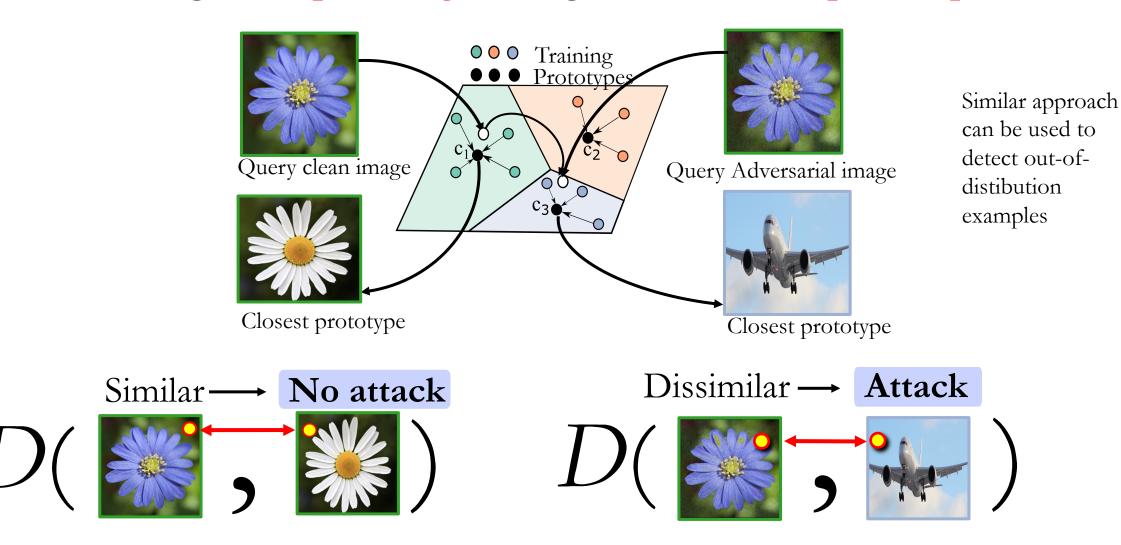
Impact:

Key idea-

[KKN & MS, ICCVW19]

Activated prototypes

Adversarial example detection: pose the problem as similarity matching of input image to highest activated prototype

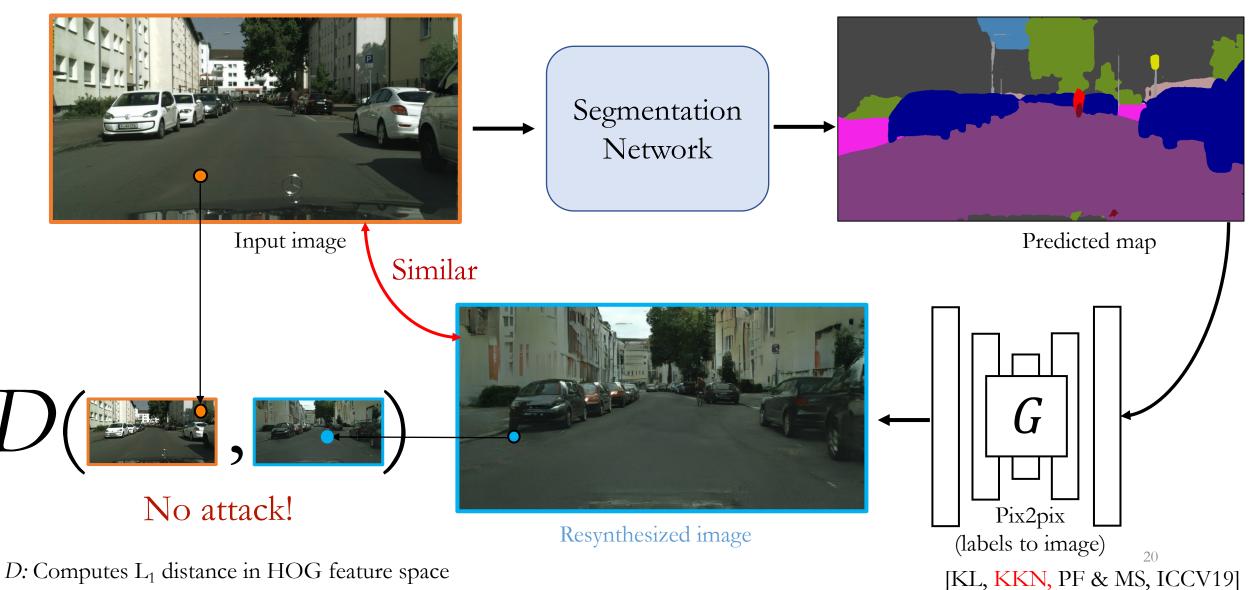


D: Siamese-based detector to predict if the input pair is similar or dissimilar 18

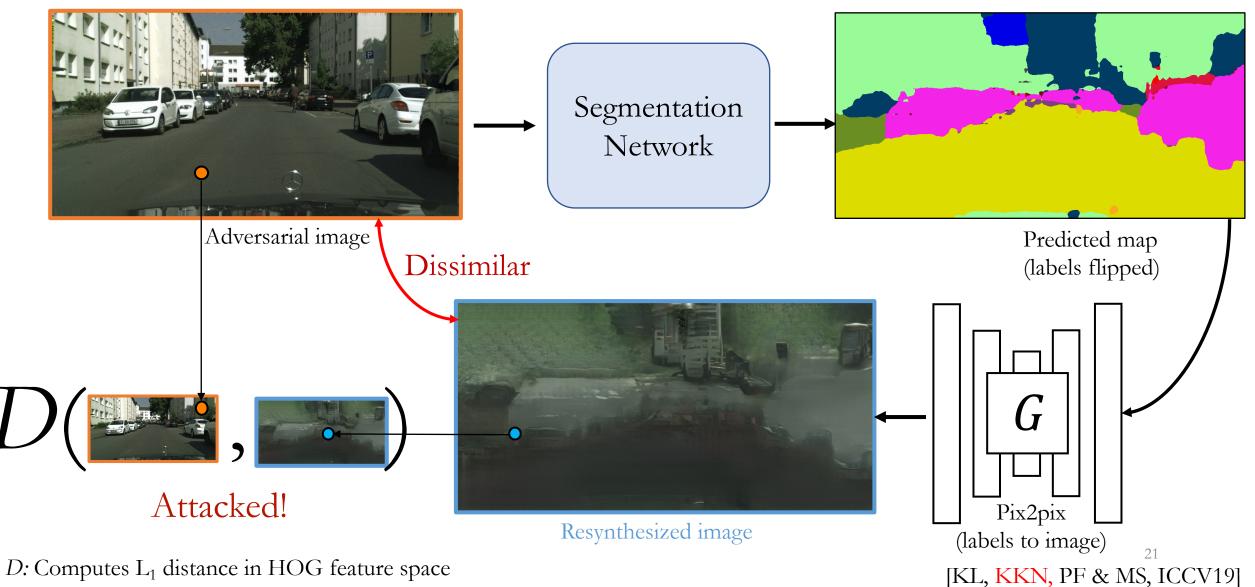
Is the detector robust to attacks all the time?

- No. Detector breaks down with our defense-aware adaptive attack in pure white box setting (aware of detector weights and stratefy)
- However, the approach works in gray-box (adversary aware of defense mechanism) and black-box setting (no access to detector weights) wrt detector

Adversary detection beyond image-recognition Adversarial example detection in semantic segmentation by comparing input image to the image resynthesized from output map

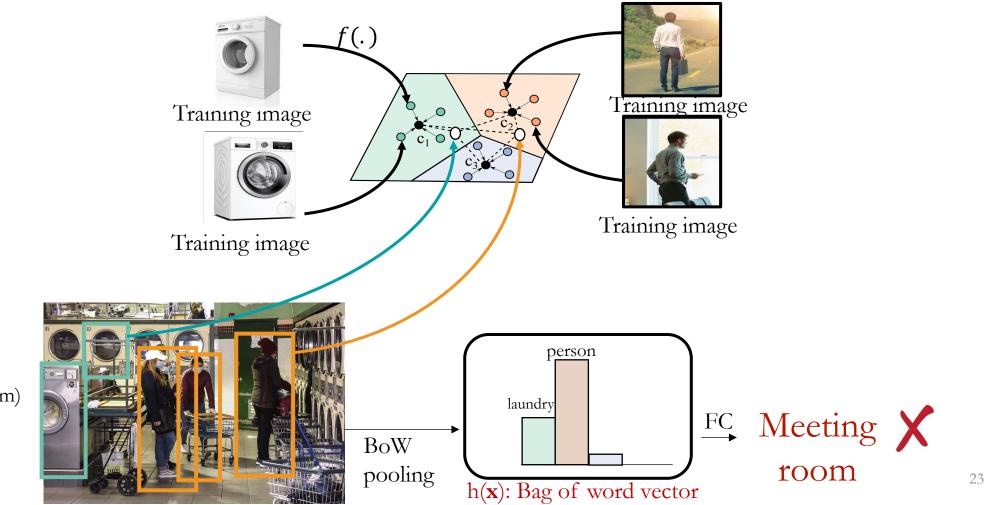


Adversary detection beyond image-recognition Adversarial example detection in semantic segmentation by comparing input image to the image resynthesized from output map



Focus areas

Downside: all features participate in the feature aggregation step of BoW pooling

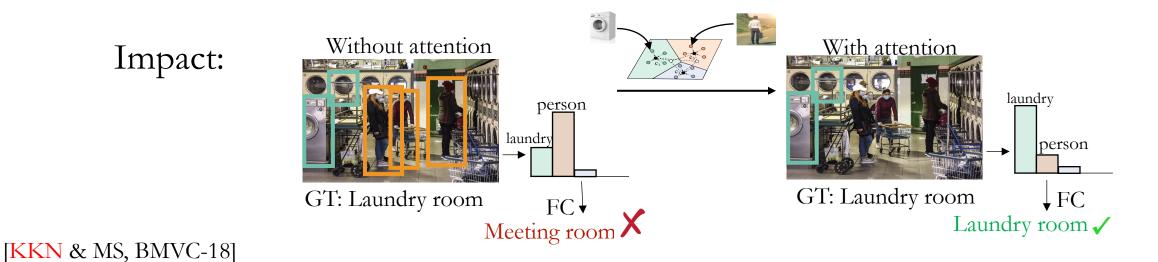


Test image (GT: Laundry room)

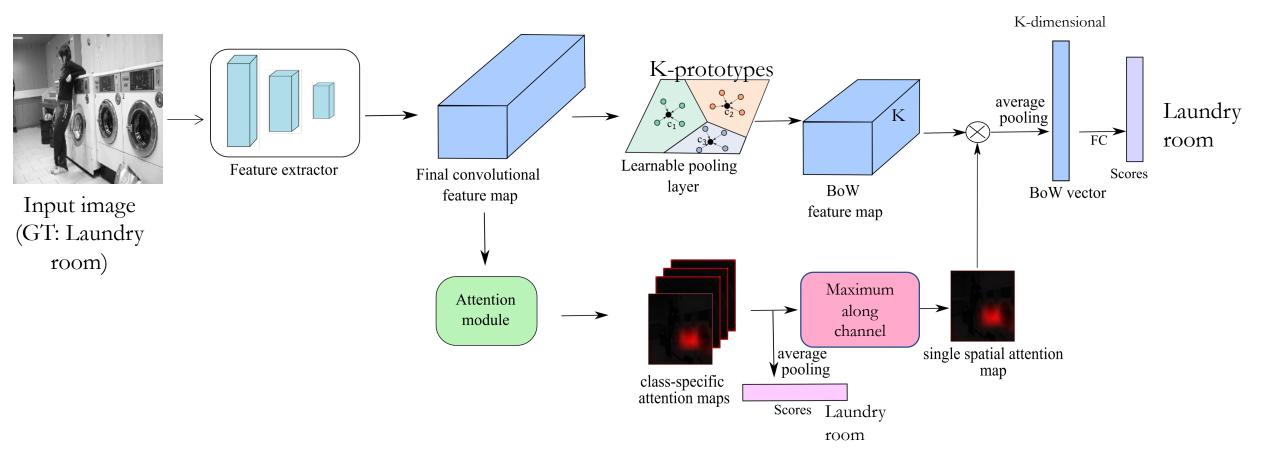
Remove the influence of non-discriminative regions. How?

• Key idea: attention-aware pooling—

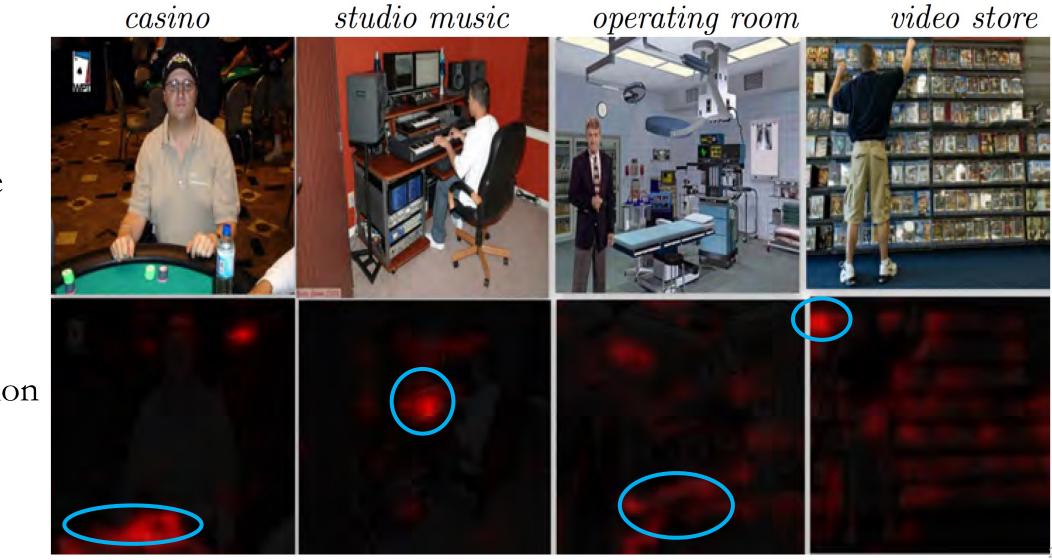
By introducing the attention during the feature aggregation process, the BoW representation becomes more discriminative



Key idea: introduce attention in BoW pooling to remove contribution of non-discriminative features



Attention ignores the non-discriminative regions (such as the person which is common across classes) and focuses on discriminative regions of the output class



Input image

Attention map

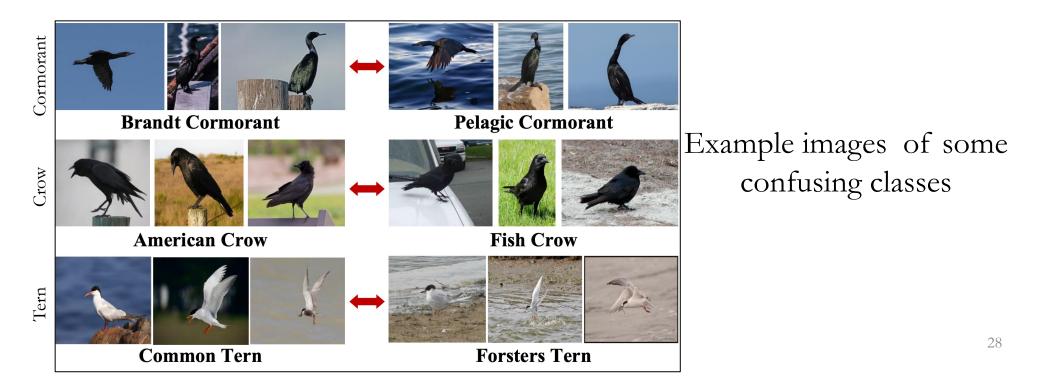
By incorporating attention, we can significantly improve the discriminative power of BoW latent representation

						Accuracy
	Pooling	Anno.	Birds	Cars	Aircrafts	MIT-Indoor
	VGG-16	BBox	79.9	88.4	86.9	-
	Attention	BBox	77.2	90.3	85.0	-
4% Attention helps the most in BoW pooling	NetBoW	BBox	74.4	89.1	85.6	-
	Attentional-NetBoW	BBox				
	NetVLAD	BBox	82.4	89.8	88.0	-
	Attentional-NetVLAD	BBox				
	VGG-16		76.0	82.8	82.3	76.6
	Attention		77.0	87.4	81.4	77.2
8%	NetBoW		68.9	85.2	79.9	76.1
	Attentional-NetBoW					J
	NetVLAD		80.6	89.4	86.4	79.2
	Attentional-NetVLAD					

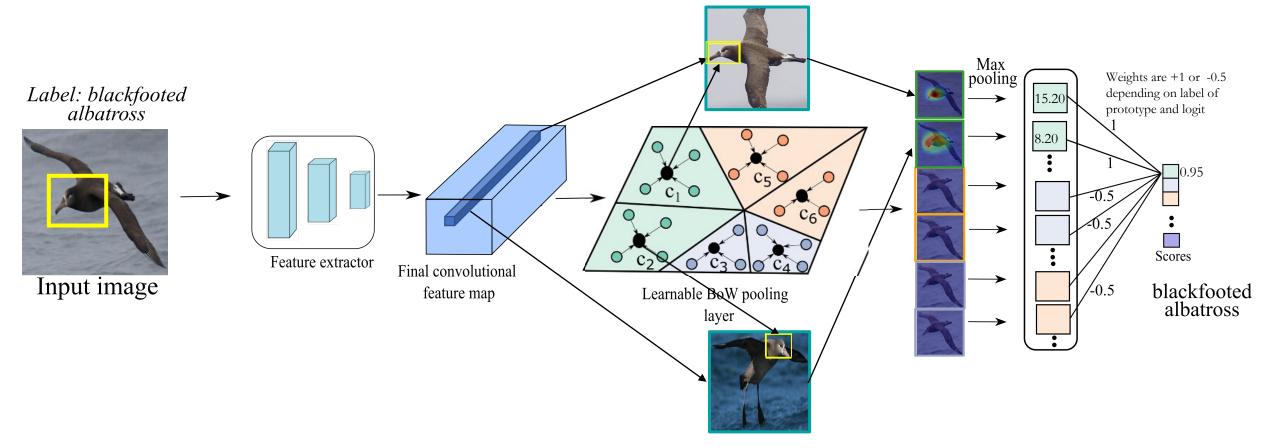
The reasons for success of adversarial attacks in fine-grained datasets has lot of subtleties

Benefits with fine-grained datasets

- Understand the DNNs workings at local patch level instead of global object level
- More sensitive to attacks since local perturbations can change the label

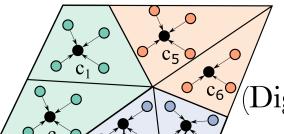


ProtoPNet: Classify image based on evidence from local patches

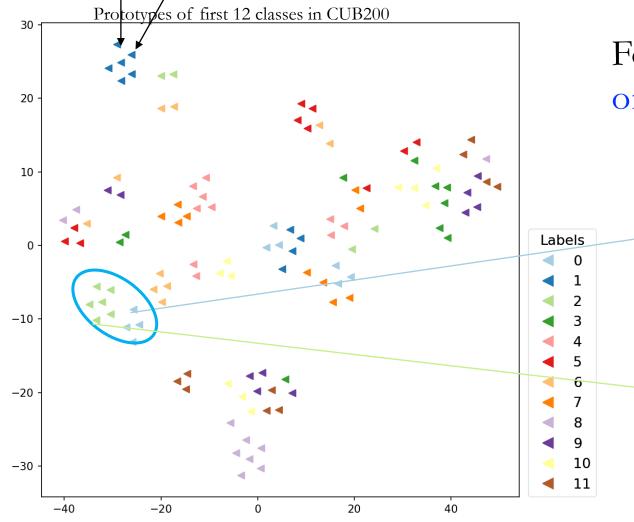


ProtoPNet [Chen et al. NeurIPS 2019]

Yellow box denotes the visual representation of prototype patch along with full training image from which the patch is extracted

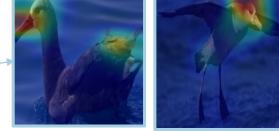


t-SNE visualization of learned prototypes (Digging deeper: understanding reasons for success of attacks)



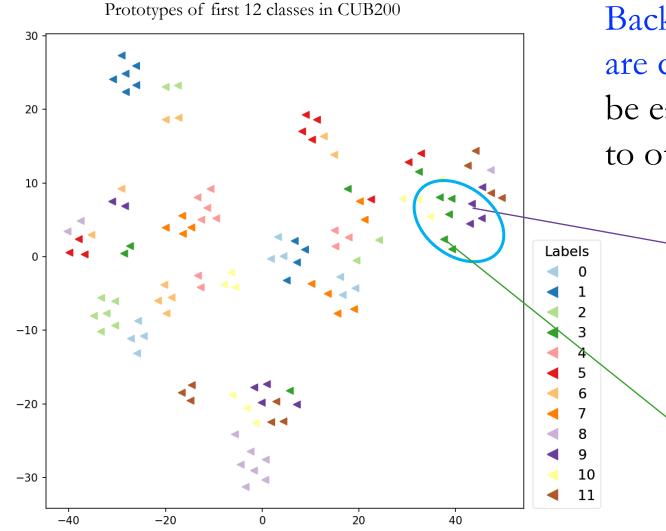
Foreground prototypes of different classes of same family are close to each other

Class 0 : Blackfooted albatross



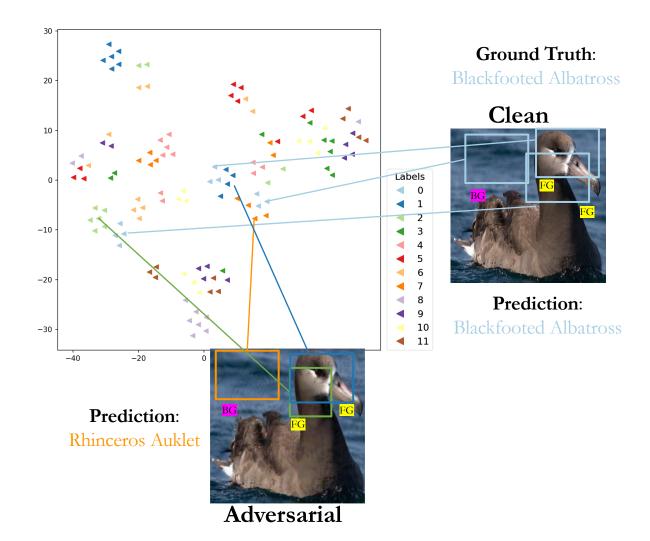
Class 2: Sooty albatross

t-SNE visualization of learned prototypes (Digging deeper: understanding reasons for success of attacks)



Background prototypes of different classes are close to each other and therefore can be easily attacked to change from one class to other _{Class 3}

An intuitive example to understand the success of adversarial attacks on ProtoPNet

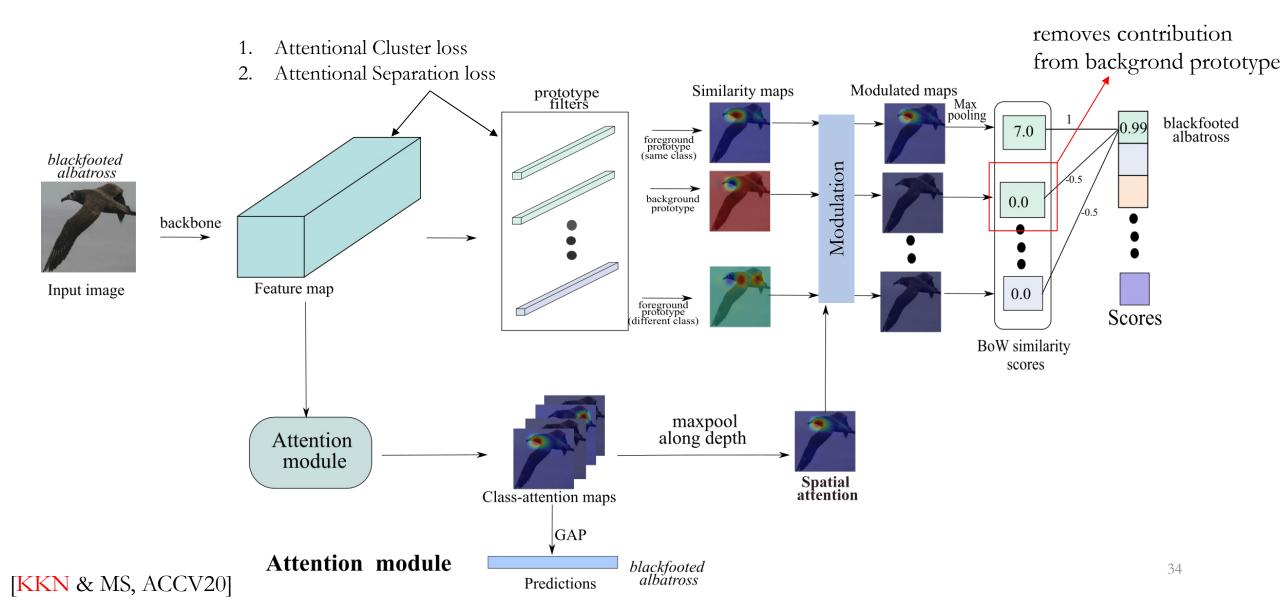


How can these observations help to improve the robustness? maximal separation of discriminative features

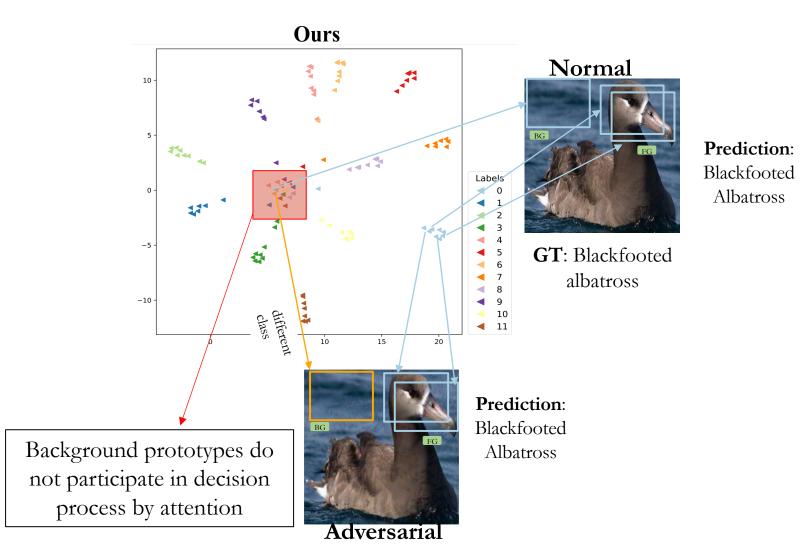
Intuition If we can maximally separate the latent features of foreground (discriminative) regions of different classes and also remove the influence of background regions in the decision process, then we have made the attacker task difficult to conduct attacks

- 1. Attentional cluster loss pulls the high-attention regions in a sample close to the nearest prototype of its own class
- 2. Attentional separation loss pulls the high-attention regions in a sample away from the nearest prototype of other class

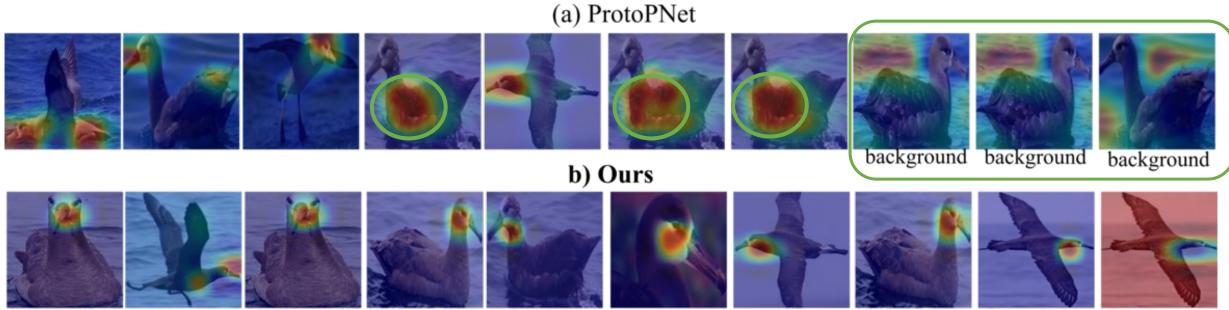
Attention-aware architecture



Our method yields well-separated foreground prototypes while clustering background prototypes



Visualization of learned Prototypes (our prototypes are fine-grained and complete non-discriminative regions activated by background prototype)



background

Visualization of 10 classs specific prototypes of Black Footed Albatross class

Our adversarial training strategy with novel losses consistently achieves higher performance against white-box attacks

Accuracy[↑]

	$egin{array}{c} { m Attacks} \ { m (Steps},\epsilon) \end{array}$			$\begin{array}{c} \mathrm{FGSM} \\ (1,8) \end{array}$	$_{(10,2)}^{\rm BIM}$		$\begin{array}{c} \mathrm{PGD} \\ (10,2) \end{array}$	$\begin{array}{c} \mathrm{PGD} \\ (10,8) \end{array}$	$_{(10,2)}^{\rm MIM}$	MIM (10,8)
GG-16	AP* [71] AP+PCL* [183] Ours-A*	60.7%	50.5%	28.5%	41.9% 47.1% 51.7%	22.8%	46.7%	21.6%	47.2%	
0A	ProtoPNet* [29] Ours-FR*									13.5% 31.1%
GG-19	AP* [71] AP+PCL* [183] Ours-A*	61.8%	52.1%	30.9%		24.7%	48.6%	23.3%	49.1%	
V	ProtoPNet [*] [29] Ours-FR [*]									10.2% 32.3%

Black-box auto-attack ensemble on adversarial trained models

						Accuracy ↑
Base	Attacks	Clean	APGD (CE)	APGD (DLR)	Square	Auto attack
9	AP* [74]	54.9%	15.1%	14.0%	39.2%	22.7%
	AP+PCL* [186]	60.7%	18.0%	14.1%	42.9%	25.0%
넻	Ours-A*	67.0%	$\mathbf{23.7\%}$	15.1%	$\boldsymbol{47.3\%}$	28.7%
N	ProtoPNet* [29]	55.6%	2.8%	2.3 %	31.6%	12.2%
	Ours-FR*	60.4%	24.2%	15.5%	46.2%	28.6%
6	AP* [74]	55.7%	20.2%	14.4%	44.1%	26.2%
-	AP+PCL* [186]	59.7%	20.8%	17.3%	51.1%	29.7 %
59	Ours-A*	65.0%	$\mathbf{24.4\%}$	17.4%	51.9%	31.2%
N	ProtoPNet [*] [29]	51.9%	1.1 %	1.0 %	28.0%	10.0%
	Ours-FR*	62.1%	27.4%	18.5%	52.1%	32.7%
			- 1	1.0		$\epsilon = 8$

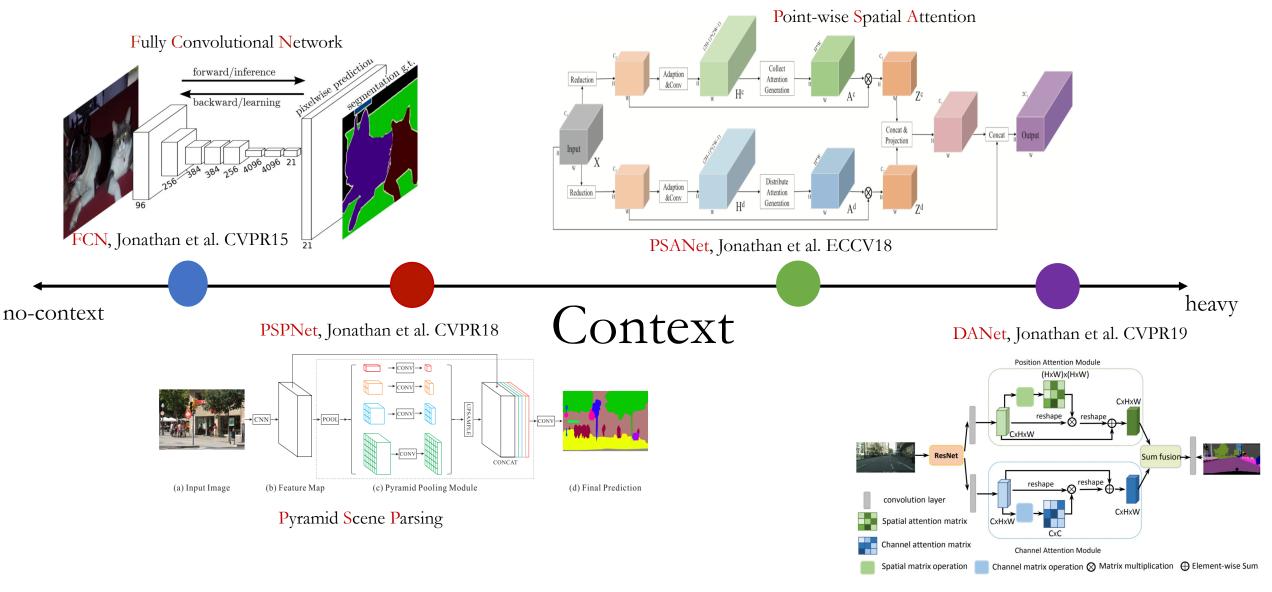
Focus areas

Adversarial Attacks

- Attacks beyond image recognition
 - White-box attacks on semantic segmentation
 - Black-box transfer attacks on visual object tracker
- Improving the transferability of attacks
 - Learning transferable transferable perturbations
- How can we use adversarial attack to improve DNNs
 - Semantic adversarial attacks to study disentanglement

Exploiting context to understand the susceptibility of DNNs for Semantic Segmentation

Understanding context is the core building block in modern segmentation networks



Exploiting context in semantic segmentation models

We discover that context empowers the attackers to fool objects far away from the perturbed area. For example, a perturbation of size 4% of image area fools the prediction at 60% of image area for PSANet.

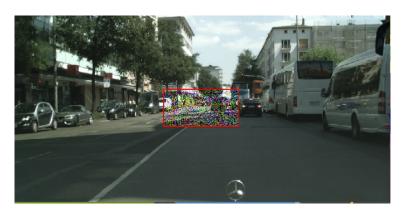
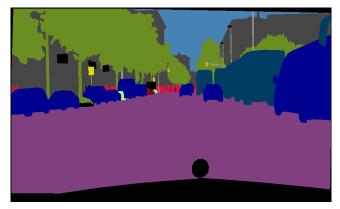


Image perturbed with 9%



Clean prediction

Adversarial prediction 43

[KKN & MS, ECCV20]

Perturbing static regions (e.g., road, sidewalk) affects the predictions at far away dynamic regions (e.g., bus, pedestrians) in inconspicuous way

Realistic-looking segmentation map

Advelsaniatringage

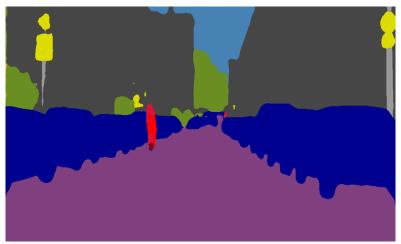
Indirect local attack in red box regions

Advelsanial predictions

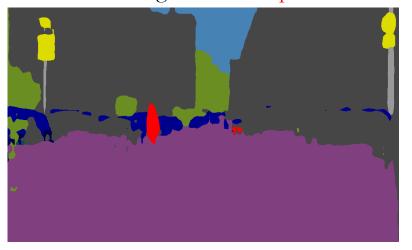
Fools the distant dynamic objects

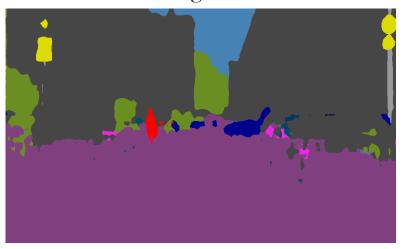
Context-aware networks are highly vulnerable to indirect attacks than FCN

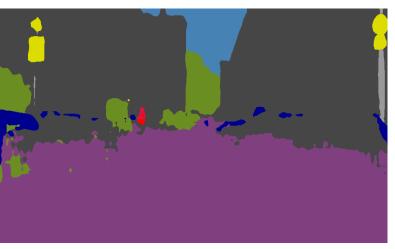
Adversarial image with local perturbations



Clean segmentation





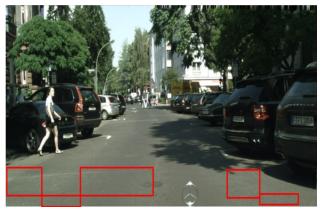


PSANet

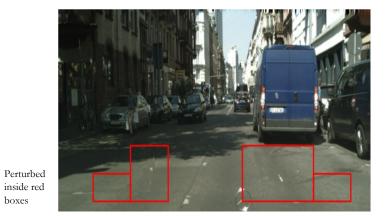
DANet

Indirect adaptive attack results

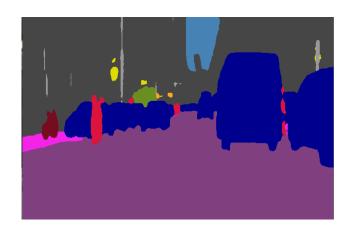
Adversarial image

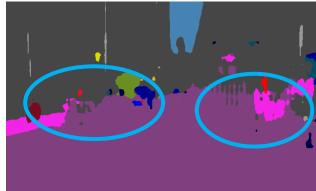


Clean predictions

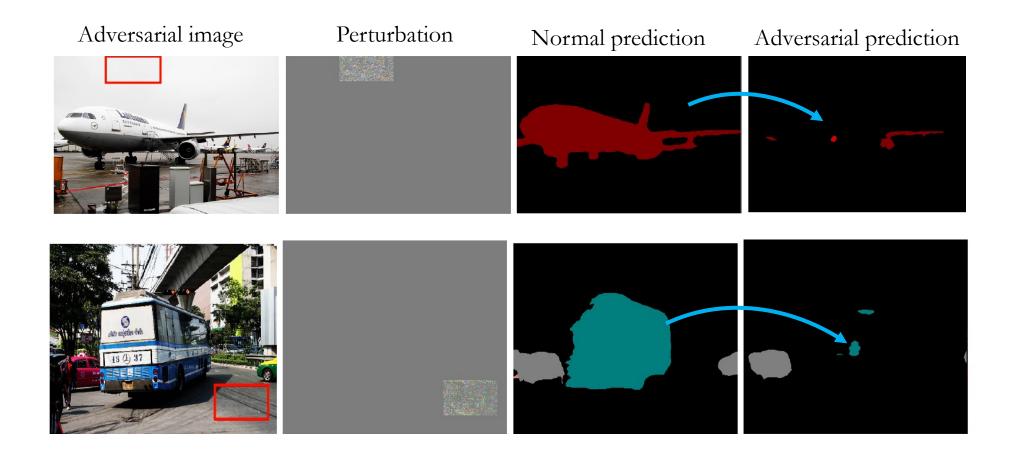


boxes



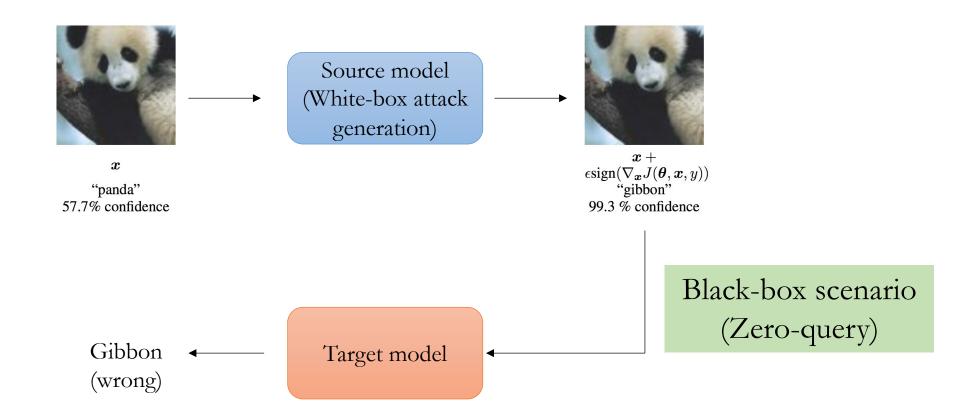


Another perspective: Indirect attacks helps to understand contextual dependencies in DNNs (e.g. sky-aeroplane, road-car, road-bus)



Transferable Adversarial Examples

(Perturbation generated from one network transfers to other network)



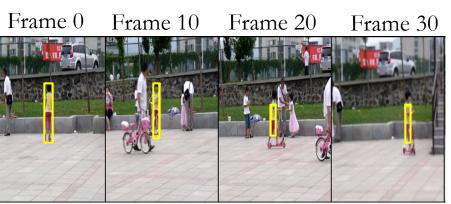
Transferable perturbations require no access to the target model

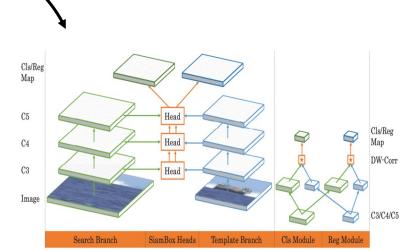
Adversarial Attacks

- Attacks beyond image recognition
 - White-box attacks on semantic segmentation
 - Black-box transfer attacks on visual object tracker
- Improving the transferability of attacks
 - Learning transferable transferable perturbations
- How can we use adversarial attack to improve DNNs
 - Semantic adversarial attacks to study disentanglement

Challenges in transfer-based black-box attacks on object trackers

(VOT takes template as input and detects it in all subsequent search images)





Novel objects at test time (non-overlapping with training objects) Computing perturbation per frrame should be efficient as trackers work at real-time

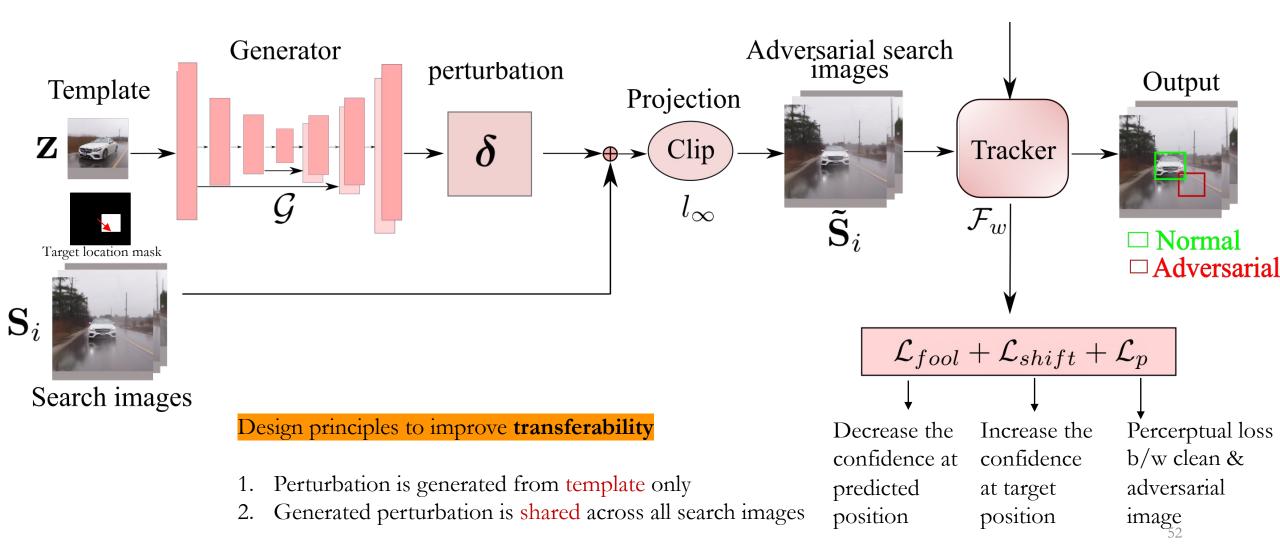
Should generalize to different tracker frameworks such as SiamCAR, SiamBAN, OCEAN Goal: Efficient black-box attacks on visual object tracking

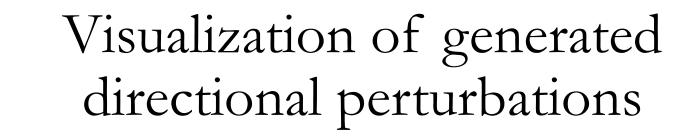
We propose to learn to generate a single perturbation from the object template only, that can be added to every search image and still successfully fool the tracker for the entire video.

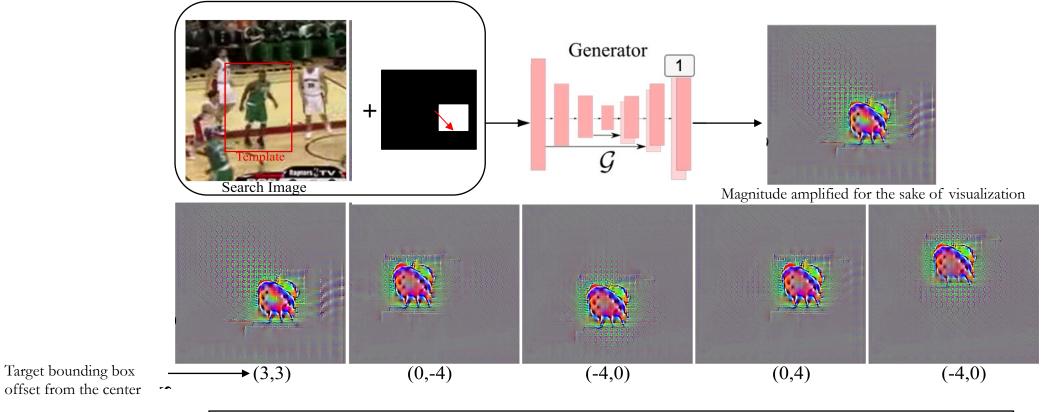
Impact:

Learns to generate powerful transferable perturbations on unknown videos and trackers

Temporally-transferable perturbation generator



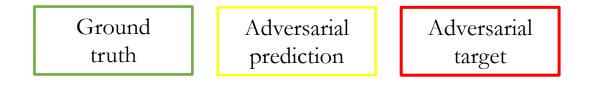




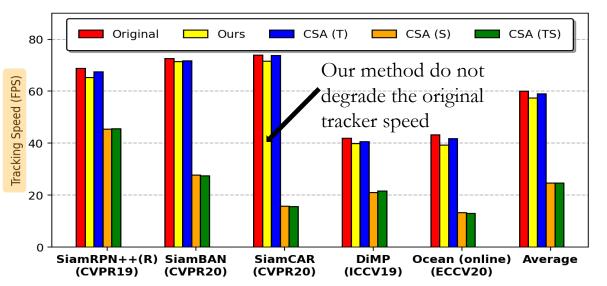
Generated perturbation contains adversarial object-like patch at target position

Targeted adversarial attacks to steer the target tracker to follow the object at a fixed offset

Using 12 precomputed directional perturbations



Our transfer-attacks are highly efficient and effective too



Generator	trained	on SiamRI	PN++	(ResNe	t50)		S : S	uccess	; P : Pre	ecision
Methods	SiamRPN++ (M)		Siam	SiamBAN SiamC		CAR	CAR DiMP		Ocean online	
	S (↑)	\mathbf{P} (\uparrow)	${f S}$ (\uparrow)	$\mathbf{P}\left(\uparrow ight)$	${f S}~(\uparrow)$	$\mathbf{P}\left(\uparrow ight)$	\mathbf{S} (\uparrow)	$\mathbf{P}\left(\uparrow ight)$	\mathbf{S} (\uparrow)	$\mathbf{P}\left(\uparrow ight)$
Normal	0.657	0.862	0.692	0.910	0.696	0.908	0.650	0.847	0.669	0.884
CSA(T)	0.613	0.833	0.590	0.793	0.657	0.852	0.649	0.849	0.614	0.843
CSA (S)	0.281	0.440	0.371	0.531	0.373	0.536	0.641	0.840	0.390	0.645
CSA(TS)	0.348	0.431	0.347	0.510	0.391	0.559	0.642	0.844	0.423	0.705
$Ours_f(TD)$	0.347	0.528	0.478	0.720	0.444	0.599	0.643	0.839	0.492	0.768
Ours (TD)	0.217	0.281	0.198	0.254	0.292	0.377	0.631	0.821	0.345	0.452
Ours _f	0.408	0.616	0.478	0.721	0.567	0.770	0.646	0.843	0.592	0.829
Ours	0.212	0.272	0.198	0.253	0.292	0.374	0.638	0.837	0.338	0.440

Y-axis is **tracker speed** and x-axis is different tracker frameworks Performance of Ours (Universal perturbation generated from single fixed template) and Ours (TD) (perturbations generated from template of given input video) method are at same range

Adversarial Attacks

- Attacks beyond image recognition
 - White-box attacks on semantic segmentation
 - Black-box transfer attacks on visual object tracker
- Improving the transferability of attacks
 - Learning transferable transferable perturbations
- How can we use adversarial attack to study DNNs
 - Semantic adversarial attacks to study disentanglement

Understanding and Improving the Transferability of Generative Adversarial Perturbations

Learning Transferable Adversarial Perturbations

We investigate the transferability of generative perturbations when the conditions at inference time differ from the training ones in terms of

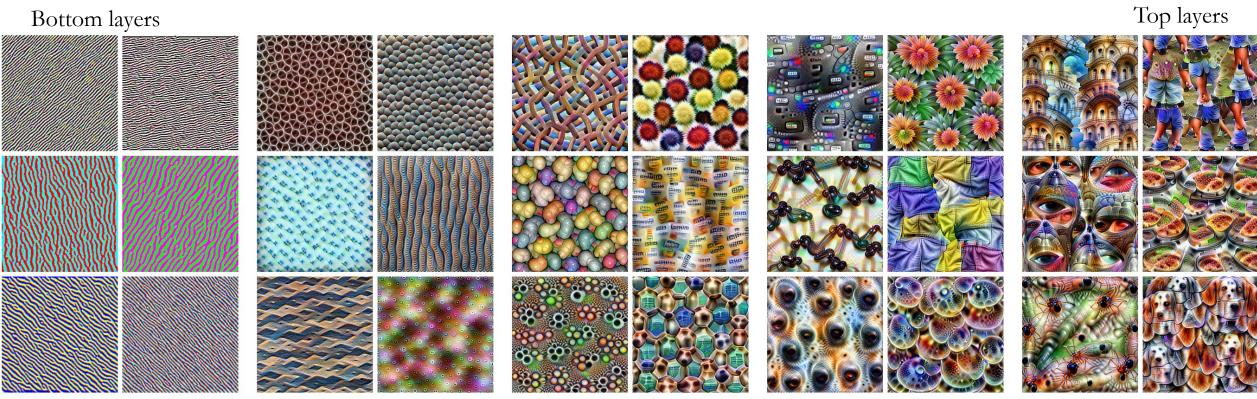
1. Target architecture Generator was trained to attack a VGG-16 but the target network is a ResNet152

2. Target data Generator was trained using the Paintings dataset, but the test data comes from ImageNet

3. Target task

Generator was trained to attack an image recognition model but faces an object detector at test time

Now let's take a step back and see how deep neural networks build up their understanding of images?



Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Inception filter visualization

Credit: https://distill.pub/2017/feature-visualization

Learning Transferable Adversarial Perturbations

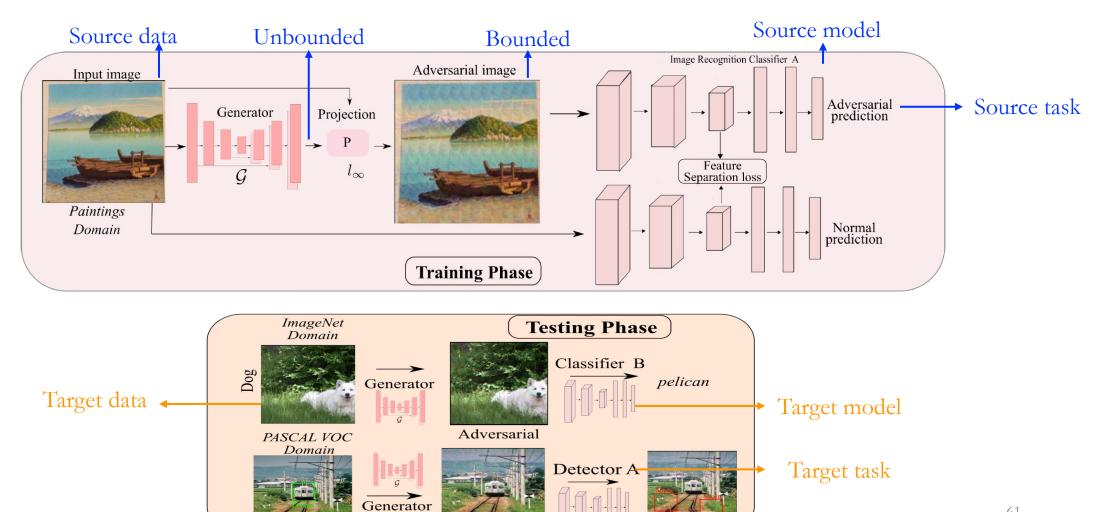
Disrupting the mid-level features using feature separation loss empowers attackers to learn perturbations with high transfer rates across target architectures, target datasets and target tasks without any queries

Most prior works in transfer-based black-box attacks focus on only unknown architecture Our work focuses on black-box attacks on unknown architecture, data and task

[KKN & MS, NeurIPS21]

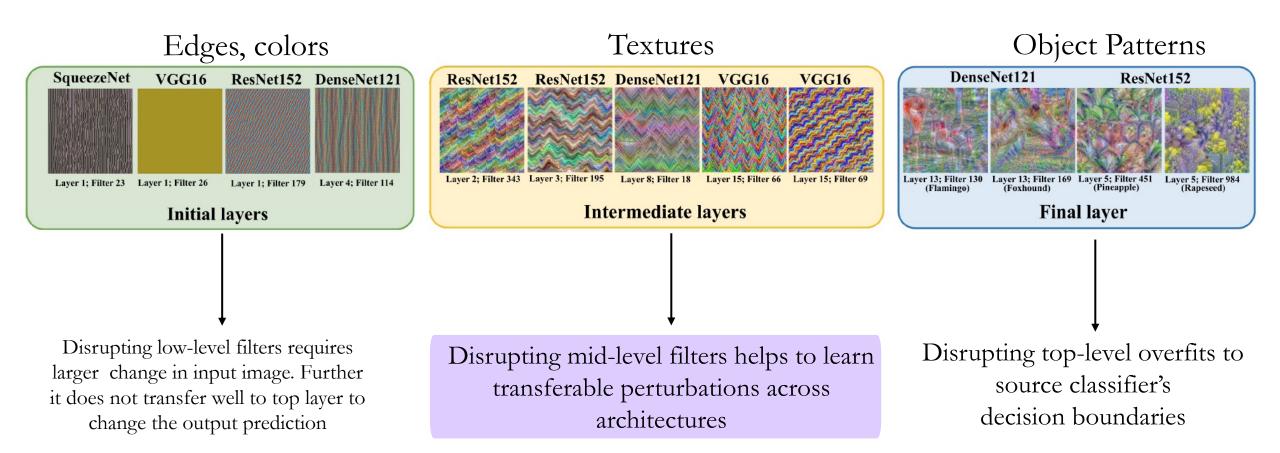
Training a perturbation generator with mid-level feature separation loss

61

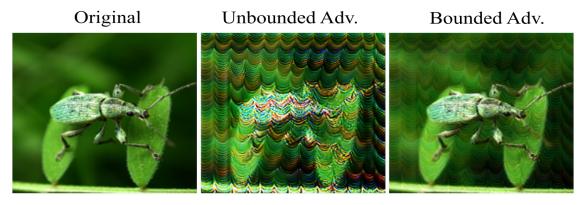


61

CNNs with different architectures share similar filter bank



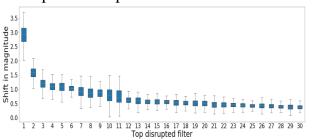
Understanding the high transfer rates from ResNet152 to VGG16



(a) White-box attack on ResNet152 (Fooling Rate: 99.7%)

Top 30 disrupted filters of ResNet152

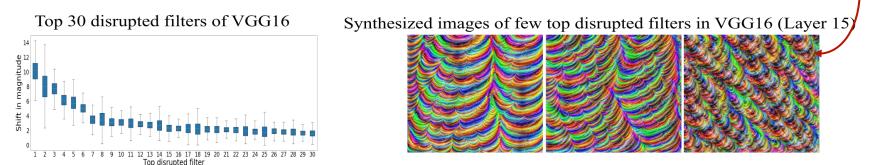
Synthesized images of few top disrupted filters in ResNet152 (Layer 3)



are similar. Thus, transfer rates are high between from ResNet152 to VGG-16

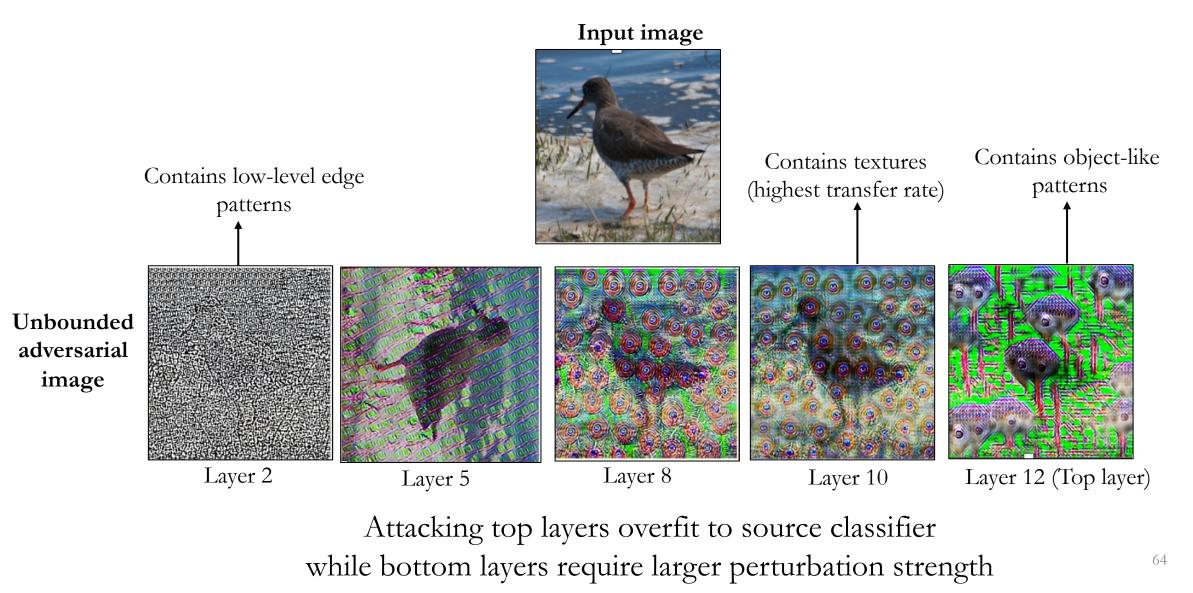
Top disrupted filters

(b) Transfer attack from ResNet152 to VGG16 (Fooling Rate: 99.1%)



63

Visualization of unbounded adversarial images with feature separation loss by attacking different layers on SqueezeNet



Standard black-box transferability

(access to substitute model on target data & target data)

Gen. Training	Discriminator	VGG16	ResNet152	Inception-v3	DenseNet121	SqueezeNet1.1	Average
(data)	Discriminator		GA	AP [10] / CDA [11] / Ou	urs		Average
	VGG-16	99.9* / 99.8* / 99.3*	53.5 / 53.6 / 68.4	41.7 / 43.2 / 46.6	58.9 / 66.5 / 84.7	67.8 / 70.6 / 86.5	64.4 / 66.7 / 77.1
ImagaNat	ResNet152	93.2 / 96.8 / 99.1	97.6* / 99.6* / 99.7*	60.5 / 66.0 / 74.9	87.5 / 94.2 / 98.8	83.9 / 82.8 / 89.1	84.5 / 87.9 / 92.3
ImageNet (1.2M)	Inception-v3	88.2 / 97.2 / 99.0	83.4 / 82.7 / 90.4	96.5* / 98.7* / 99.6*	89.5 / 93.6 / 96.7	90.9 / 92.0 / 93.2	89.7 / 92.9 / 95.8
(1.2NI)	DenseNet121	94.9 / 95.0 / 99.4	89.5 / 91.0 / 98.7	56.1 / 57.7 / 86.0	99.6* / 99.6* / 99.6*	79.7 / 81.5 / 95.6	84.0 / 85.0 / 95.9
	SqueezeNet	88.0 / 91.5 / 96.1	50.4 / 57.1 / 76.4	48.0 / 47.6 / 70.7	64.0 / 69.0 / 88.7	99.8* / 99.7* / 99.7*	70.0 / 73.0 / 86.3
	Average	92.8 / 96.1 / 98.6	74.9 / 76.8 / 86.7	60.6 / 62.6 / 75.6	79.9 / 84.6 / 93.7	77.6 / 78.5 / 89.5	78.5 / 81.1 89.5

65

Source and Target models are trained on same ImageNet data but differ in architecture

Strict black-box transferability

(access to substitute model on target data but no target data)

Gen. Training	Discriminator	VGG16	ResNet152	Inception-v3	DenseNet121	SqueezeNet 1.1	Average
(data)	(ImageNet)		GA	P [10] / CDA [11] /	Ours		
	VGG-16	99.8 / 99.9 / 99.5	54.3 / 54.0 / 77.4	45.8 / 45.2 / 61.9	66.3 / 64.2 / 93.6	70.7 / 68.4 / 93.4	67.4 / 66.3 / 85.1
Comics	ResNet152	75.3 / 95.8 / 99.3	97.6798.17 99.6	31.7 / 66.5 / 73.1	45.1 / 87.7 / 98.6	67.3 / 86.0 / 90.7	63.4 / 86.8 / 92.3
(40K)	Inception V3	84.3 / 85.6 / 99.0	97.2 / 97.3 / 90.4	99.8 / 99.8 / 99.6	88.5 / 87.9 / 96.7	82.4 / 82.3 / 93.2	90.5 / 90.6 / 95.8
(4011)	DenseNet121	96.9 / 87.8 / 96.5	98.0 / 55.7 / 93.0	83.1 / 48.5 / 82.5	99.4 / 97.7 / 98.8	78.3 / 81.2 / 91.9	91.2 / 74.2 / 92.5
	SqueezeNet	87.7 / 89.9 / 96.5	54.0 / 58.2 / 79.0	51.2 / 51.4 / 75.4	68.7 / 76.3 / 90.2	99.7 / 99.8 / 99.7	72.3 / 75.1 / 88.2
	Average	88.1 / 91.8 / 98.2	80.2 / 72.6 / 87.8	62.3 / 62.3 / 78.5	73.6 / 82.8 / 95.6	7976 / 83.6 / 93.8	79.9 / 78.6 / 90.8
	VGG-16	99.4 / 99.9 / 99.0	41.1 / 57.6 / 66.6	36.5 / 46.6 / 50.0	50.8 / 73.8 / 84.6	63.7 / 73.0 / 86.4	58.3 / 70.1 / 77.3
Delinting	ResNet152	80.4 / 89.9 / 98.7	95.4 / 97.5 / 99.4	50.7 / 62.1 / 72.8	70.4 / 82.3 / 97.9	70.4 / 81.1 / 89.2	73.5 / 82.6 / 91.6
Paintings	Inception V3	80.3 / 80.5 / 98.6	95.8 / 96.4 / 88.2	99.6 / 99.6 / 99.5	87.7 / 87.2 / 95.2	77.5 / 72.8 / 90.8	88.2 / 87.3 / 94.5
(80K)	DenseNet121	87.6 / 86.5 / 96.2	80.1 / 81.2 / 90.9	51.4 / 50.4 / 76.0	98.8 / 98.9 / 97.4	73.6 / 73.7 / 91.7	67.7 / 78.1 / 90.5
	SqueezeNet	82.8 / 80.7 / 95.2	46.0 / 46.0 / 73.4	44.5 / 47.4 / 71.0	59.3 / 56.5 / 87.2	99.4 / 99.3 / 99.6	66.4 / 66.0 / 85.3
	Average	86.1 / 87.5 / 97.6	71.7 / 75.8 / 83.7	56.5 / 61.2 / 73.9	73.4 / 79.7 / 92.5	76.9 / 80.0 / 91.5	72.9 / 76.8 / 87.8
	VGG-16	78.7 / 85.6 / 93.3	23.2 / 23.3 / 41.8	25.5 / 27.9 / 31.3	27.5 / 28.2 / 53.4	46.1 / 48.0 / 64.3	40.2 / 42.6 / 56.8
ChestX	ResNet152	39.9 / 44.8 / 56.4	27.0 / 25.3 / 62.8	28.2 / 25.7 / 27.7	25.9 / 26.6 / 38.1	44.9 / 47.1 / 60.5	33.2 / 33.9 / 49.2
	Inception V3	56.0 / 50.3 / 91.6	35.9 / 32.0 / 69.5	44.4 / 35.1 / 84.9	45.9 / 35.4 / 77.4	65.1 / 57.7 / 75.6	49.5 / 42.1 / 79.8
(10K)	DenseNet121	42.8 / 42.3 / 64.0	26.4 / 25.2 / 44.2	28.0 / 28.8 / 34.0	41.9 / 48.2 / 76.0	54.2 / 48.8 / 60.2	38.7 / 38.7 / 55.7
	SqueezeNet	51.7 / 51.1 / 81.1	27.9/31.6/ 52.5	30.2 / 33.1 / 47.1	31.6 / 35.1 / 64.2	81.3 / 78.9 / 96.4	44.5 / 46.0 / 68.3
	Average	53.8 / 54.8 / 77.2	28.1 / 27.4 / 54.2	31.3 / 30.1 / 45.0	34.6 / 34.7 / 61.9	58.3 / 56.1 / 71.4	41.2 / 40.6 / 62.0

Fooling rate

Fooling rate

Extreme Cross-domain Transferability

66

Target'

Source

Source and Target models are trained on different data and also

differ in architecture

(neither access to substitute model on target model nor target data)

Gen. Training	Discriminator	$\mathbf{ResNet50}$	SeNEt154	SeResNet101	Average
(data)	(ImageNet)	GAI	P [209] / CDA [188] /	Ours	
	VGG-16	41.25 / 24.59 / 76.15	41.44 / 30.43 / 45.82	29.75 / 23.01 / 35.85	37.48 / 26.01 / 52.61
ImageNet	ResNet152	54.82 / 52.78 / 93.18	50.76 / 50.72 / 77.44	46.00 / 45.13 / 65.00	50.35 / 49.54 / 78.54
(1.2M)	Inception-v3	40.78 / 55.63 / 70.40	33.07 / 36.49 / 48.10	35.12 / 36.59 / 39.52	36.32 / 42.90 / 52.67
(1.201)	DenseNet121	52.95 / 50.97 / 90.66	38.52 / 43.42 / 73.30	45.36 / 46.10 / 63.07	45.61 / 46.83/ 75.68
	SqueezeNet	36.40 / 35.57 / 63.89	34.04 / 25.55 / 47.32	34.57 / 30.51 / 39.39	35.00 / 30.54 / 50.20
	Average	45.13 / 43.91 / 78.86	39.57 / 37.32 / 58.40	38.16 / 36.27 / 48.57	40.95 / 39.17 / 61.94
		(a	b) CUB200		
Gen. Training	Discriminator	ResNet50	SeNEt154	SeResNet101	Average
(data)	(ImageNet)	GAI			
	VGG-16	18.07 /48.65 / 70.22	32.35 / 30.03/ 32.41	12.66 / 14.76 / 21.73	21.03 / 31.15 / 41.45
ImageNot	ResNet152	37.08 / 71.27 / 94.80	33.25 / 34.31 / 62.74	22.73 / 31.51 / 62.23	31.02 / 45.70 / 73.26
ImageNet	Inception-v3	51.27 / 44.12 / 44.34	35.63 / 36.25 / 38.59	31.68 / 25.43 / 25.83	39.53 / 35.27 / 36.25
(1.2M)	DenseNet121	59.84 / 57.46 / 98.32	28.98 / 34.09 / 65.27	24.71 / 25.43 / 71.76	37.84 / 38.97 / 78.45
	SqueezeNet	26.07 / 30.32 / 85.33	17.09 / 16.06 / 31.69	$14.40\ /\ 18.19\ /\ 31.54$	19.19 / 21.52 / 49.52
	Average	38.47 / 50.36 / 78.60	29.46 / 30.15 / 46.14	21.24 / 23.05 / 42.62	29.72 / 34.52 / 55.79
		(b) S	Stanford Cars		
Gen. Training	Discriminator	ResNet50	SeNEt154	SeResNet101	Average
(data)	(ImageNet)	GAI	P [209] / CDA [188] /	Ours	

Target models on CUB200

Avg. 23% improvement over CDA

		(b) S	tanford Cars		
Gen. Training	Discriminator	ResNet50	SeNEt154	SeResNet101	Average
(data)	(ImageNet)	GAP			
	VGG-16	25.20 / 23.97 / 79.36	46.77 / 38.79 / 37.28	36.15 / 27.42 / 38.16	36.04 / 30.06 / 51.60
ImamoNot	ResNet152	42.87 / 64.45 / 96.82	49.02 / 53.35 / 91.63	36.72 / 56.80 / 86.44	42.87 / 58.20 / 91.63
ImageNet	Inception-v3	49.38 / 43.95 / 72.61	54.25 / 35.25 / 59.41	46.28 / 43.11 / 42.87	49.97 / 40.77 / 58.30
(1.2M)	DenseNet121	37.11 / 37.05 / 93.10	38.73 / 41.04 / 88.30	35.22 / 36.93 / 83.59	37.02 / 38.34 / 88.33
	SqueezeNet	26.07 /33.63 / 82.30	27.18 / 27.57 / 41.70	38.40 / 42.78 / 52.51	30.55 / 34.66 / 58.84
	Average	36.13 / 40.61 / 84.84	43.19 / 39.20 / 63.66	38.55 / 41.41 / 60.71	39.29 / 40.41 / 69.74
Fooling rat	e	(c)) Aircraft		

Cross-task transferability analysis

(ImageNet classifier — PASCAL VOC SSD detector) No access to target data, target model and target task

mAP	
-----	--

Gen. Training	Discriminator	VGG16	ResNet50	EfficientNet	MobileNet-v3	Average
(data)	(Trained on ImageNet)		GAP [10] / C	DA [11] / Ours		J
-	No Attack	68.12	66.08	61.07	55.44	62.68
	VGG-16	19.9 / 25.2 / 9.08	15.7 / 20.9 / 13.7	12.4 / 13.4 / 14.2	9.22 / 13.1 / 14.5	14.3 / 18.1 / 10.
Comics	ResNet152	31.0 / 25.3 / 13.7	23.0 / 20.2 / 10.5	23.9 / 17.3 / 12.2	17.9 / 14.0 / 8.37	24.0 / 19.2 / 11.
(40K)	Inception-v3	33.2 / 33.8 / 23.7	27.9 / 27.7 / 25.1	31.1 / 30.7 / 22.0	20.2 / 18.7 / 18.4	28.8 / 27.7 / 22.
(40K)	DenseNet121	22.1 / 26.3 / 12.2	18.6 / 21.6 / 14.5	17.8 / 20.1 / 16.2	13.9 / 15.3 / 9.55	18.1 / 20.8 / 13
	SqueezeNet	29.4 / 32.6 / 18.1	24.8 / 28.9 / 15.7	20.5 / 24.4 / 17.7	15.7 / 20.5 / 11.9	22.6 / 26.6 / 15
	Average	27.1 / 28.7 / 15.4	22.0 / 23.8 / 15.9	21.1 / 21.2 / 16.5	15.4 / 16.3 / 11.7	21.4 / 22.5 / 14
	VGG-16	20.2 / 20.4 / 9.83	21.4 / 22.5 / 13.2	14.7 / 15.0 / 12.8	11.4 / 12.5 / 12.8	16.9 / 17.6 / 12
Deintings	ResNet152	36.6 / 29.4 / 12.8	26.7 / 21.9 / 12.5	22.9 / 16.8 / 11.8	21.3 / 17.6 / 9.40	26.9 / 21.4 / 11
Paintings	Inception-v3	32.3 / 33.5 / 16.8	29.2 / 29.0 / 18.7	28.1 / 28.5 / 14.3	23.4/22.6/13.2	28.3 / 28.4 / 15
(80K)	DenseNet121	31.7 / 33.2 / 9.27	23.1 / 23.2 / 11.0	23.5 / 24.1 / 10.6	20.2 / 20.9 / 6.53	24.6 / 25.3 / 9.3
	SqueezeNet	35.3 / 35.9 / 17.0	28.5 / 29.0 / 13.7	26.7 / 27.5 / 17.1	21.0 / 21.1 / 8.77	27.9 / 28.3 / 14
	Average	31.3 / 30.5 / 13.1	25.8 / 25.1 / 13.8	23.2 / 22.4 / 13.3	19.5 / 18.9 / 10.1	25.0 / 24.2 / 12
	VGG-16	17.8 / 15.5 / 8.27	19.2 / 13.9 / 11.8	9.64 / 8.91 / 11.1	8.39 / 5.79 / 9.78	13.7 / 11.0 / 10
	ResNet152	19.0 / 16.6 / 9.23	13.5 / 14.6 / 7.67	12.5 / 11.7 / 6.56	12.4 / 7.67 / 4.29	14.3 / 12.6 / 6.9
ImageNet (1.2M)	Inception-v3	13.0 / 22.1 / 15.5	15.7 / 19.4 / 18.2	13.8 / 12.5 / 13.5	11.3 / 15.1 / 11.6	15.6 / 17.3 / 14
	DenseNet121	21.5 / 16.1 / 7.60	15.7 / 13.7 / 8.32	13.8 / 11.4 / 7.73	11.3 / 7.10 / 4.42	15.6 / 12.1 / 7.
	SqueezeNet1	27.7 / 26.6 / 13.5	23.7 / 22.5 / 10.8	18.6 / 23.4 / 11.8	15.2 / 17.2 / 7.40	21.3 / 22.5 / 10
J	Average	19.8 / 19.3 / 10.8	17.5 / 16.8 / 11.4	13.5 / 13.6 / 10.1	12.1 / 10.6 / 7.50	15.7 / 15.1 / 9. 9

Source and Target models are trained on different data, task and also differ in architecture

Adversarial Attacks

- Attacks beyond image recognition
 - White-box attacks on semantic segmentation
 - Black-box transfer attacks on visual object tracker
- Why adversarial attacks transfer?
 - Learning transferable transferable perturbations
- How can we use adversarial attack to improve DNNs
 - Semantic adversarial attacks to study disentanglement

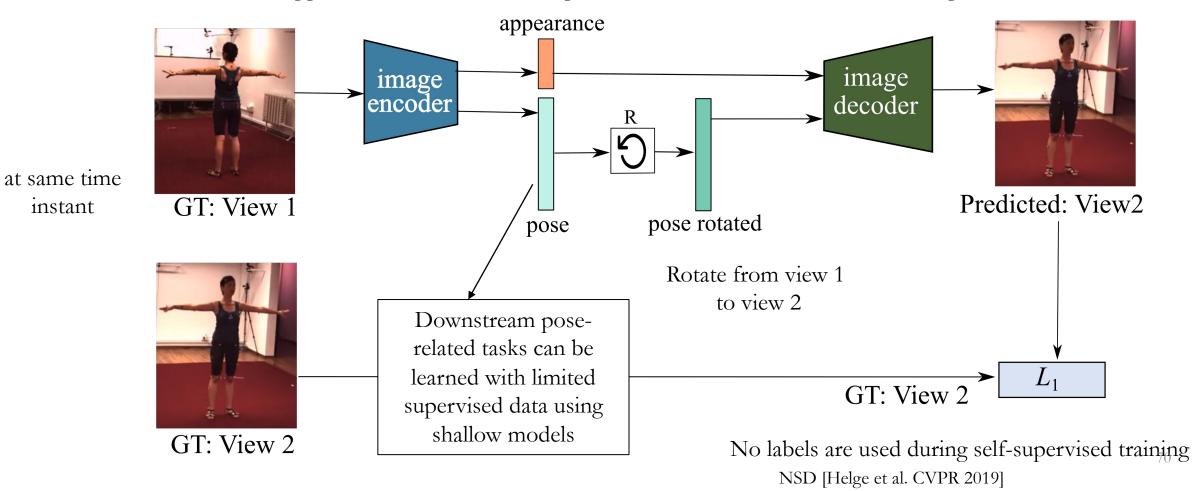
Goal: Semantic attacks to study disentanglement of pose and appearance

What is disentanglement? Disentangled representations capture independent factors of variations in data

Why do we need it? Disentangled representations improves the performance of downstream tasks with limited supervision

Background: Self-supervised Disentangled Representations (one technique using multi-view information)

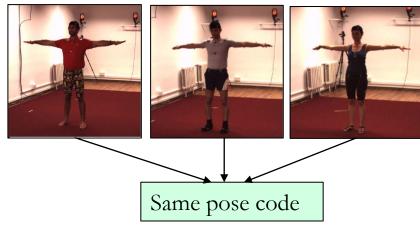
Approach: Take one view as input and reconstruct the other view as output



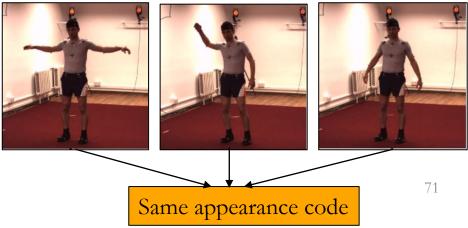
Analyze the disentanglement of pose and appearance

Hypothesis

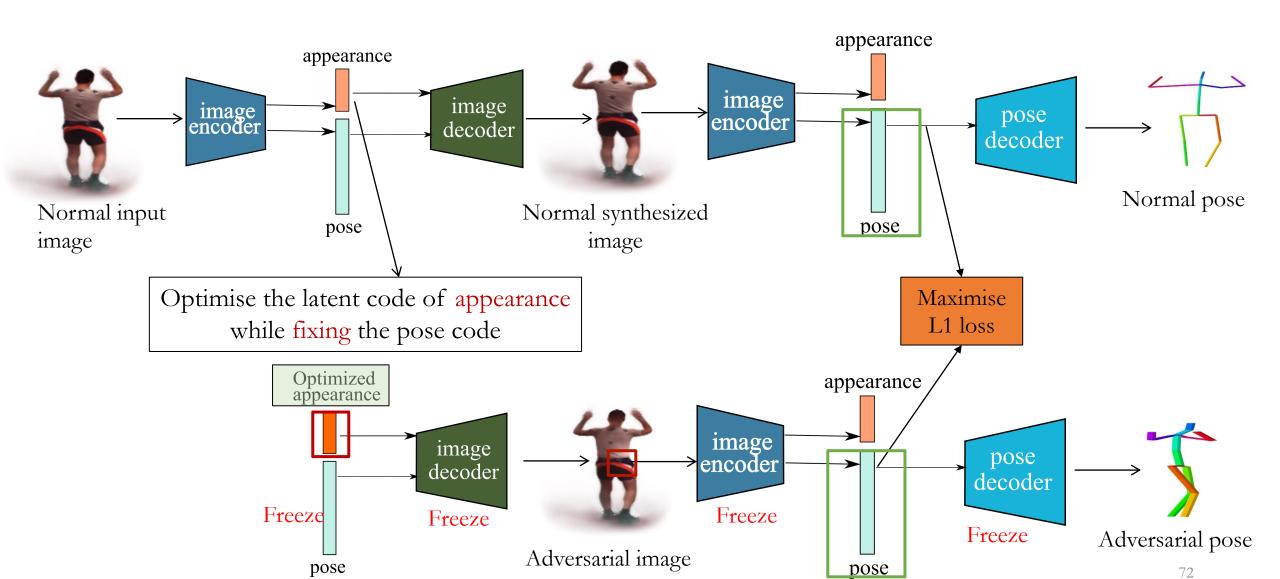
Given two disentangled latent codes that capture two underlying factors of variation in the input data, the adversarial modification of one factor in the input image should not alter the latent code encoded by another factor



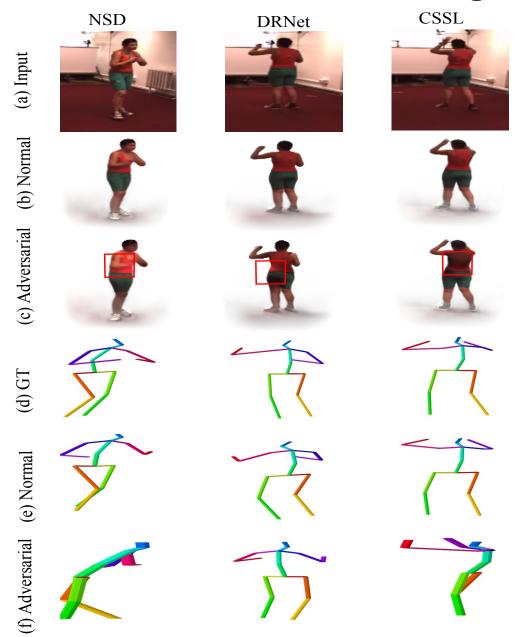
Example of pose-appearance disentanglement



Semantic appearance attacks to understand the disentanglement of pose and appearance



Qualitative results to show the disentanglement is incomplete

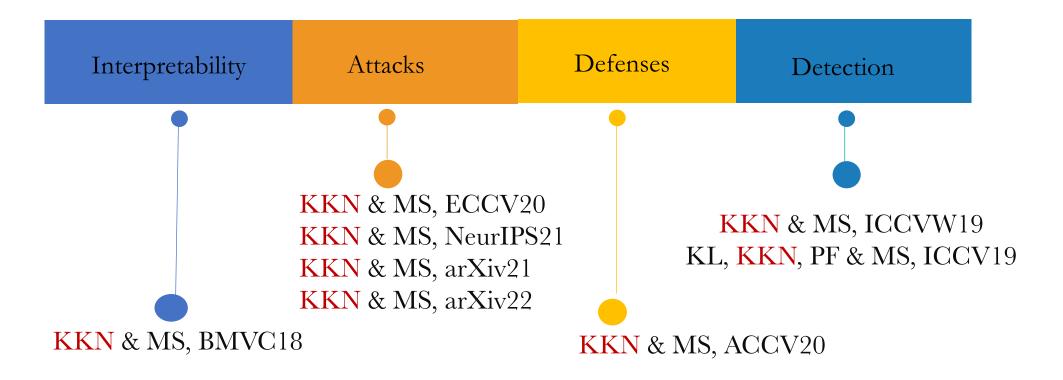


- A testbed to evaluate the disentanglement of pose and appearance
- Potential connection between disentanglement and robustness

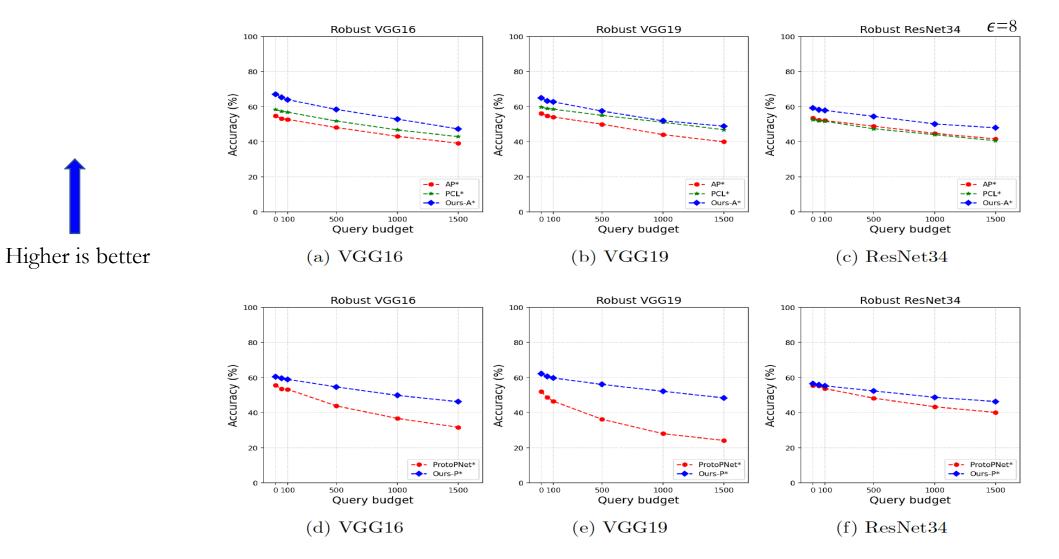
Conclusion

- Adversarial attacks have significant implication in the world of self-driving cars.
 - Results of indirect attack to fool far away dynamic objects are unsettling
- Black-box attacks are more realistic threat setting than white-box setting
 - Transferable perturbations in cross-model, cross-domain and cross-task setting
- Interpretable models to reveal working mechanism of adversarial attacks and to improve robustness
 - BoW networks for adversarial attack detection
 - Attention-based BoW networks with metric learning for defending to attacks

Questions?

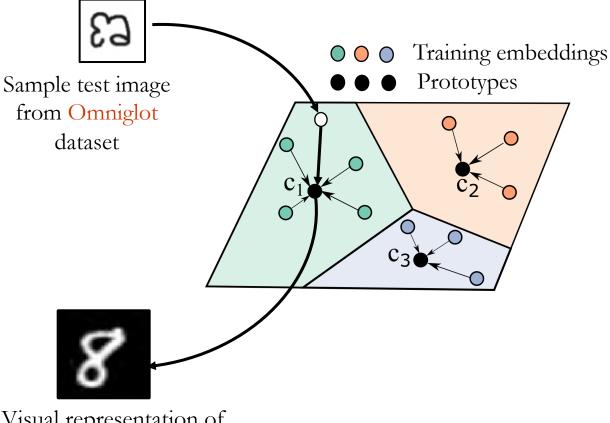


Black-box Square attacks on adversarial trained models



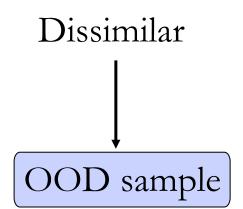
Y-axis is accuracy, and x-axis is query budget for Square attack

Similar intuition for OOD detection: Out-of-distribution (OOD) input activates a different looking prototype

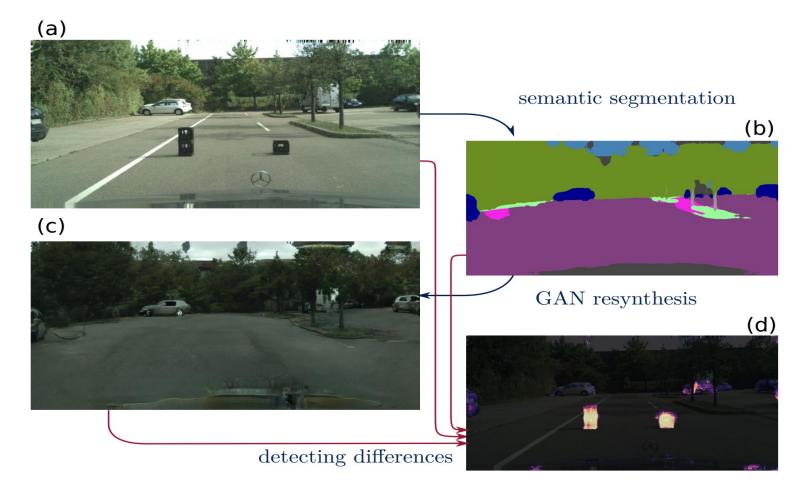


Visual representation of closest prototype trained on In-distribution dataset D: Siamese network to predict if the input pair is similar or dissimilar trained on In-distribution dataset

8



Road Anomaly detection Pixel-level detection of anomalous objects by comparing input image to the image resynthesized from output map

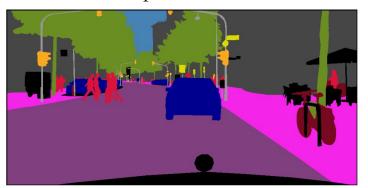


Pretrain the discrepancy detector network on real and synthesised images by randomly replacing objects of few classes with other classes

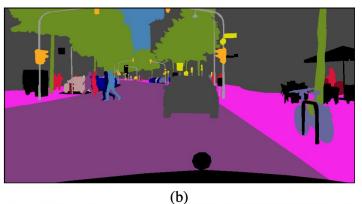
[KL, KKN, PF & MS, ICCV19]

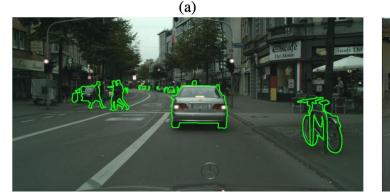
Road Anomaly detection Pixel-level detection of anomalous objects by comparing input image to the image resynthesized from output map

Real predictions



Randomly alter labels of few instances

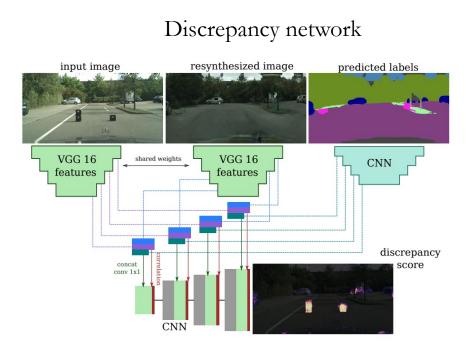




Outlines of altered objects

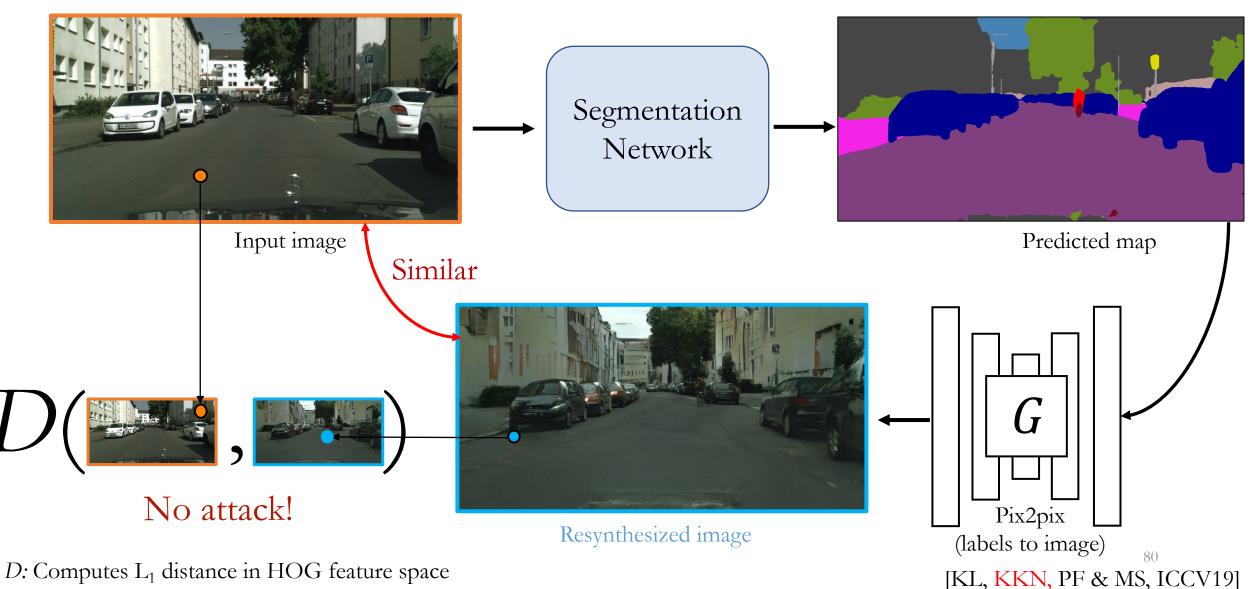
Resynthesized image

Pretrain the discrepancy detector network on real and synthesised images by randomly replacing objects of few classes with other classes

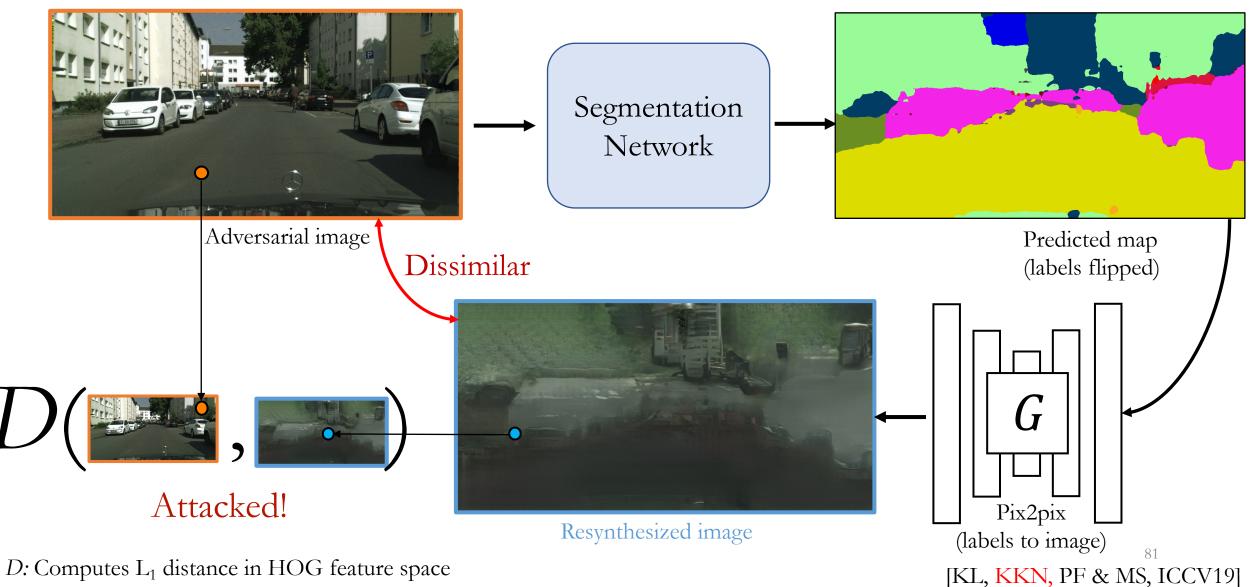


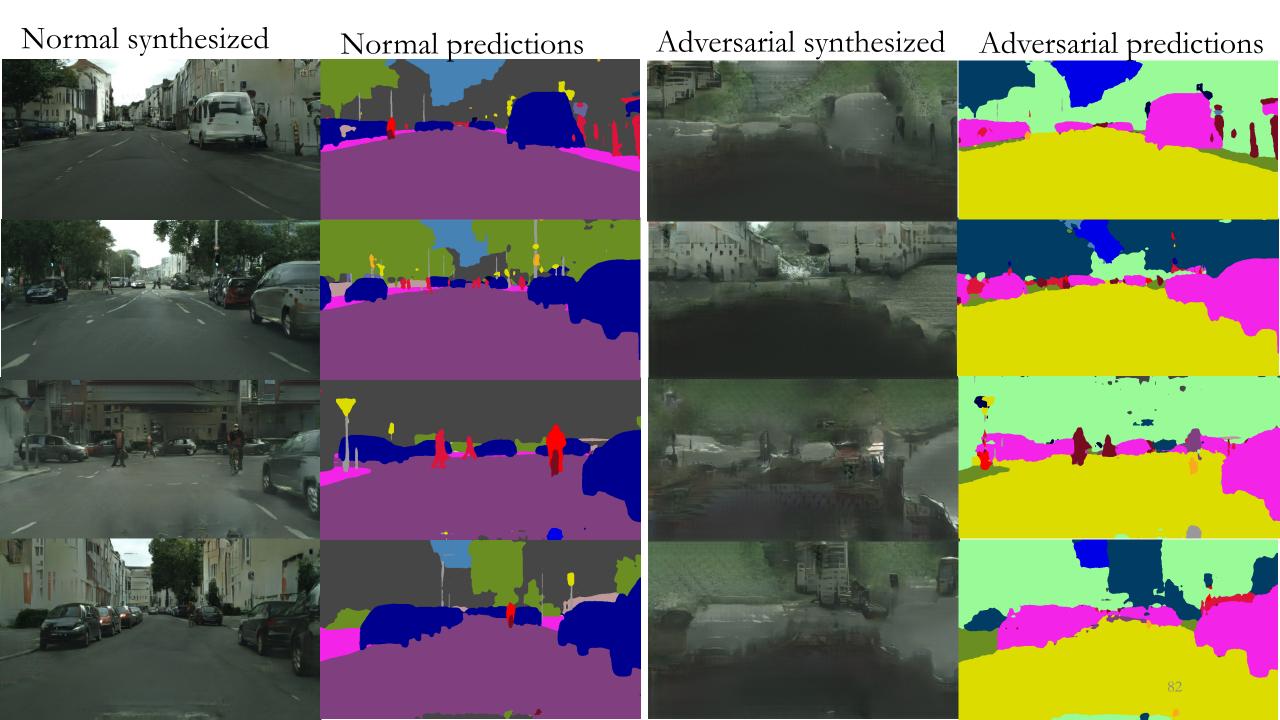
[KL, KKN, PF & MS, ICCV19]

Adversary detection beyond image-recognition Adversarial example detection in semantic segmentation by comparing input image to the image resynthesized from output map



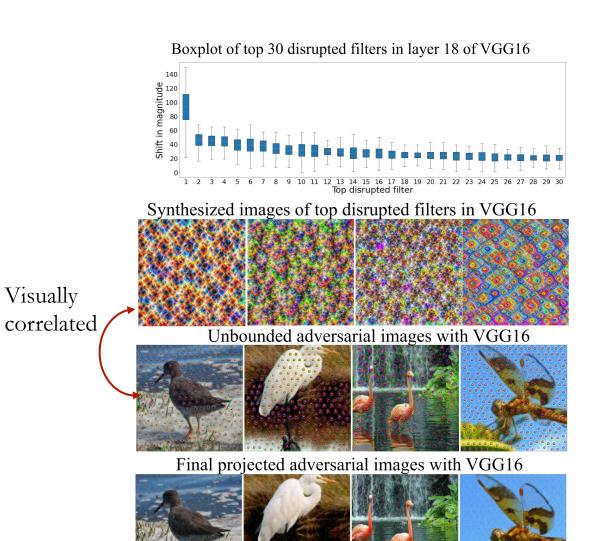
Adversary detection beyond image-recognition Adversarial example detection in semantic segmentation by comparing input image to the image resynthesized from output map



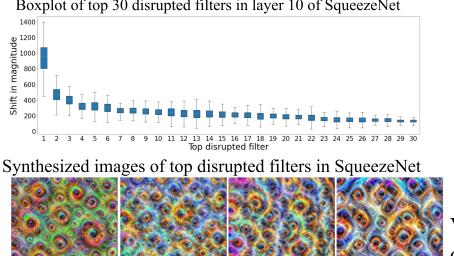


Visual correlation b/w adversarial images & top disrupted filters

(a) Generator trained against VGG16



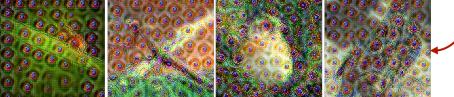
(b) Generator trained against SqueezeNet



Boxplot of top 30 disrupted filters in layer 10 of SqueezeNet

Visually correlated

Unbounded adversarial images with SqueezeNet



Final projected adversarial images with SqueezeNet

