
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Understanding Deep Neural Networks using
Adversarial Attacks

Krishna Kanth NAKKA

Thèse n° 9259

2022

Présentée le 15 août 2022

Prof. N. H. B. Flammarion, président du jury
Prof. P. Fua, Dr M. Salzmann, directeurs de thèse
Dr J. H. Metzen, rapporteur
Prof. G. C. Buttazzo, rapporteur
Prof. P. Frossard, rapporteur

Faculté informatique et communications
Laboratoire de vision par ordinateur
Programme doctoral en informatique et communications

To Sri Sirivennela Seetharama Sastry Garu

Acknowledgements
This thesis would not be possible without the contributions of many people either di-

rectly or indirectly. First and foremost, I would like to thank my advisor, Dr. Mathieu

Salzmann, for accepting me to work with him. The impact he has had on me goes

beyond research, and I am deeply inspired by his work ethic. My association with him

has taught me a lot of things such as managing time efficiently and becoming more

focused on things I can control. I am grateful to Prof. Pascal Fua for taking me into

the CVLab and providing all the hardware resources. Moreover, I would like to thank

the Swiss National Science Foundation scholarship and the EDIC fellowship for their

generous funding support.

I would like to thank my Jury members: Prof. Nicolas Flammarion, Prof. Pascal

Frossard, Prof. Giorgio Buttazzo, and Dr. Jan Hendrik Metzen for evaluating my thesis

and providing critical feedback.

I am also grateful to my friends from the CVLab who supported me during my Ph.D.

journey. Many thanks go out to Vidit, Shuxuan, Kaicheng, Weizhe, Krzystof, Sena,

Isinsu, Victor, Mateusz, Ali and many others. I enjoyed having the company of my BC306

roommates, Yinlin and Jan. They invariably encouraged me and made a huge difference

in my daily routine. Once again, my sincere thanks to Sena and Jan for their commitment

to teaching and systematic planning of TAship duties.

I’m indebted to the institutes of Brilliant, Narayana, and Samsung R&D for providing

me with the opportunity to meet some of the genius minds. Thanks to IIT Kharagpur

for nurturing me and to my EE department mates and my RP hallmates for forging a

deep lasting friendships. I want to express my gratitude to Nalam and Srinath for their

care and concern. I’m also grateful to Dr. Shankar for hiring me as an intern at Phillips

during the most tragic times.

On an emotional note, I’m immensely grateful to A.R. Rehman for bringing spirituality

and an unshakable sense of peace into my life and helping me achieve balance during

the most difficult of times. Thank you, ARR. Lastly, I humbly thank the Oncologists at

CHUV hospital, in particular Dr. Khalil Zaman, for their care towards my wife, without

which the final stages of my Ph.D. would have been extremely chaotic.

i

Abstract
Deep Neural Networks (DNNs) have achieved great success in a wide range of applications,

such as image recognition, object detection, and semantic segmentation. Even though

the discriminative power of DNNs is nowadays unquestionable, serious concerns have

arised ever since DNNs have shown to be vulnerable to adversarial examples crafted

by adding imperceptible perturbations to clean images. The implications of these mali-

cious attacks are even more significant for DNNs deployed in real-world systems, e.g.,

autonomous driving and biometric authentication. Consequently, an intriguing ques-

tion that we aim to understand is the underlying behavior of DNNs to adversarial attacks.

This thesis contributes to a better understanding of the mechanism of adversarial at-

tacks on DNNs. Our main contributions are broadly in two directions: (1) we propose

interpretable architectures first to understand the reasons for the success of adversarial

attacks and then to improve the robustness of DNNs; (2) we design intuitive adversarial

attacks to both mislead and use as a tool to expand our present understanding of DNNs’

internal workings and their limitations.

In the first direction, we introduce deep architectures that allow humans to interpret the

reasoning process of DNNs prediction. Specifically, we incorporate Bag-of-visual-words

representations from the pre-deep learning era into DNNs using an attention scheme.

We find key reasons for adversarial attack success and use these insights to propose an

adversarial defense by maximally separating the latent features of discriminative regions

while minimizing the contribution of non-discriminative regions in the final prediction.

The second direction deals with the design of adversarial attacks to understand DNNs’

limitations in a real-world environment. To begin with, we show that existing state-of-

the-art semantic segmentation networks that achieve superior performance by exploiting

the context are highly susceptible to indirect local attacks. Furthermore, we demonstrate

the existence of universal directional perturbations that are quasi-independent of the

input template but still successfully fool unknown siamese-based visual object trackers.

We then identify that the mid-level filter banks across different backbones bear strong

similarities and thus can be potential common ground for attack. We, therefore, learn a

generator that disrupts mid-level features with high transferability across different target

architectures, datasets, and tasks. In short, our attacks highlight critical vulnerabilities

iii

Abstract

of DNNs, which make their deployment challenging in the real-world environment, even

in the extreme case when the attacker is unaware of the target architecture or the target

data used to train it.

Furthermore, we go beyond fooling networks and demonstrate the usefulness of adversarial

attacks for studying the internal disentangled representations in self-supervised 3D pose

estimation networks. We carry out an in-depth analysis to understand to what degree

disentanglement representation methods separate the appearance information from the

pose one. We observe that adversarial manipulation of appearance information in the

input image alters the pose output, indicating that the pose code contains appearance

information. Our analyses show that disentanglement in the three state-of-the-art dis-

entangled representation learning frameworks is far from complete, further evidenced

through multiple image-synthesis experiments.

Besides the above contributions, an underlying theme that arises multiple times in this

thesis is counteracting the adversarial attacks by detecting them. We achieve this in

our work (1) by comparing the input image with the highest activated prototype in

bag of words networks, (2) by training logistic detectors on features computed using

Mahalanobis distance from the pre-trained class-conditional Gaussian distributions at

multiple layers, and (3) finally by comparing the input image to an image resynthesized

from the predicted label map.

Overall, this thesis presents an insightful understanding of mechanism of adversarial

attacks and the limitations of DNNs, which can provide directions for attaining robust

models.

Key Words: Deep Neural Networks, Adversarial Attacks, Black-box Attacks, Adversar-

ial Defense, Image Recognition, Semantic Segmentation, Object Tracking, Disentangle-

ment.

iv

Résumé
Les réseaux de neurones profonds (DNN) ont remporté un grand succès dans un large

éventail d’applications, telles que la reconnaissance d’images, la détection d’objets et la

segmentation sémantique. Bien que le pouvoir discriminant des DNN est aujourd’hui

incontestable, de sérieuses inquiétudes ont surgi depuis que les DNN se sont révélés

vulnérables aux exemples contradictoires conçus en ajoutant des perturbations impercep-

tibles aux images nettes. Les implications de ces programmes malveillants les attaques

sont encore plus importantes pour les DNN déployés dans des systèmes réels, par exemple,

conduite autonome et authentification biométrique. Par conséquent, une question intri-

gante que nous cherchons à comprendre est le comportement sous-jacent des DNN aux

attaques contradictoires.

Cette thèse contribue à une meilleure compréhension du mécanisme des attaques contradic-

toires sur les DNN. Nos principales contributions vont globalement dans deux directions :

(1) nous proposons architectures interprétables d’abord pour comprendre les raisons du

succès des attaques puis d’améliorer la robustesse des DNN ; (2) nous concevons des

systèmes contradictoires intuitifs attaques à la fois trompeuses et utilisées comme un

outil pour élargir notre compréhension actuelle des DNN fonctionnement interne et ses

limites. Dans la première direction, nous introduisons des architectures profondes qui

permettent aux humains d’interpréter les processus de raisonnement de la prédiction des

DNN. Plus précisément, nous incorporons Bag-of-visual-words représentations de l’ère de

l’apprentissage pré-profond dans les DNN à l’aide d’un schéma d’attention. Nous trou-

vons les principales raisons du succès des attaques adverses et utilisons ces informations

pour proposer un défense contradictoire en séparant au maximum les caractéristiques

latentes des régions discriminantes tout en minimisant la contribution des régions non

discriminantes dans la prédiction nale.

La deuxième direction traite de la conception d’attaques contradictoires pour comprendre

les DNN limites dans un environnement réel. Pour commencer, nous montrons que

l’état actuel de la des réseaux de segmentation sémantique d’art qui atteignent des

performances supérieures en exploitant le contexte sont très sensibles aux attaques lo-

cales indirectes. De plus, nous démontrons l’existence de perturbations directionnelles

universelles quasi-indépendantes de la modèle d’entrée mais réussit toujours à tromper

des trackers d’objets visuels inconnus basés sur le siamois. Nous identifions ensuite que

v

Résumé

les bancs de ltre de niveau intermédiaire à travers diérents backbones similitudes et

peuvent donc constituer un terrain d’entente potentiel pour l’attaque. Nous apprenons

donc une générateur qui perturbe les fonctionnalités de niveau intermédiaire avec une

grande transférabilité sur diérentes cibles architectures, ensembles de données et tâches.

En bref, nos attaques mettent en évidence des vulnérabilités critiques des DNN, ce qui

rend leur déploiement difficile dans l’environnement réel, même dans le cas extrême où

l’attaquant ignore l’architecture cible ou la cible données utilisées pour l’entrâıner.

De plus, nous allons au-delà de la tromperie des réseaux et démontrons l’utilité de la

confrontation attaques pour étudier les représentations désenchevêtrées internes en pose

3D auto-supervisée réseaux d’estimation. Nous effectuons une analyse approfondie pour

comprendre dans quelle mesure les méthodes de représentation de démêlage séparent les

informations d’apparence des poser un. Nous observons que la manipulation contradic-

toire des informations sur l’apparence dans le l’image d’entrée modifie la sortie de pose,

indiquant que le code de pose contient l’apparence information. Nos analyses montrent

que le démêlage dans les trois états de l’art démêlés les cadres d’apprentissage de la

représentation sont loin d’être complets, à travers de multiples expériences de synthèse

d’images.

Outre les contributions ci-dessus, un thème sous-jacent qui revient plusieurs fois dans ce

La thèse est de contrecarrer les attaques adverses en les détectant. Nous y parvenons en

notre travail en comparant l’image d’entrée avec le prototype activé le plus élevé dans

BoW réseaux, en formant des détecteurs logistiques sur des caractéristiques calculées à

l’aide de la distance de Mahalanobis à partir des distributions gaussiennes conditionnelles

de classe pré-formées à plusieurs couches, et enfin en comparant l’image d’entrée à l’image

resynthétisée à partir de l’étiquette prédite carte.

Dans l’ensemble, cette thèse présente une compréhension perspicace du mécanisme de

l’opposition attaques et les limites des DNN, qui peuvent fournir des indications pour

atteindre une robustesse des modèles.

Mots-clés : réseaux de neurones profonds, attaques contradictoires, attaques par bôıte

noire, confrontation Défense, Reconnaissance d’images, Segmentation sémantique, Suivi

d’objets, Désenchevêtrement.

vi

Publications

This thesis is largely based on following works.

Chapter 2 is based on:

• Nakka, K. K., & Salzmann, M. “Deep Attentional Structured Representation

Learning for Visual Recognition”, British Media Vision Conference (BMVC), 2018

Chapter 3 is based on:

• Nakka, K. K., & Salzmann, M. “Interpretable BoW Networks for Adversarial

Example Detection”, Explainable Artificial Intelligence Workshop, International

Conference of Computer Vision (ICCV), 2019

Chapter 4 is based on:

• Nakka, K. K., & Salzmann, M. “ Towards Robust Fine-grained Recognition by

Maximal Separation of Discriminative Features”, Asian Conference on Computer

Vision (ACCV) 2020

Chapter 5 is based on:

• Nakka, K. K., & Salzmann. “Indirect local attacks for context-aware semantic

segmentation networks”, European Conference on Computer Vision (ECCV 2020)

[Spotlight]

• Lis, K., Nakka, K. K., Fua, P. and Salzmann, M. “Detecting the unexpected via

image resynthesis”, International Conference of Computer Vision (ICCV), 2019

Chapter 6 is based on:

• Nakka, K. K., & Salzmann, M. “Universal, Transferable Adversarial Perturbations

for Visual Object Trackers”, Under review at Transactions of Pattern Analysis and

Machine Intelligence (TPAMI), 2022

vii

Publications

Chapter 7 is based on:

• Nakka, K. K., & Salzmann, M. “Learning Transferable Adversarial Perturbations”,

Advances in Neural Information Processing Systems (NeurIPS), 2021

Chapter 8 is based on:

• Nakka, K. K., & Salzmann, M. “Understanding Pose and Appearance Disentan-

glement in 3D Human Pose Estimation”, Under review at European Conference on

Computer Vision (ECCV) 2022

Roles of Co-authors

I am the sole student author of the work presented in this thesis except for the ICCV

2019 paper. The main contribution of the ICCV 2019 paper was conceptualized and

implemented by Krzystof Lis and I contributed to unifying anomaly detection with the

experiments on adversarial attack detection. Other than the ICCV 2019 paper which

was not included in the thesis, all the papers and chapters in this thesis are my own

original work which could not have been possible without the help of my advisor.

During the research and writing of each paper, regular meetings were performed with my

advisor. We discussed the ideas, direction of research, the novelty of ideas, experiment

design, reviews and rebuttal, among other things. More specifically, I contributed to the

conceptualization, methodology, software, and original draft preparation. My advisor,

Mathieu Salzmann, contributed to conceptualization, supervision, review and editing,

and administration.

viii

Contents

Acknowledgements i

Abstract (English/Français) iii

Publications vii

1 Introduction 1

1.1 Background . 3

1.2 Contributions . 4

2 Attention-Aware Structured Representation Learning 9

2.1 Introduction . 9

2.2 Related Work . 11

2.3 Method . 12

2.3.1 Structured Representation Module 12

2.3.2 Attention Module . 13

2.3.3 Attention-aware Feature Aggregation 14

2.4 Experiments . 16

2.4.1 Datasets . 16

2.4.2 Implementation Details . 16

2.4.3 Results . 17

2.4.4 Failure Cases . 19

2.4.5 Ablation Study . 19

2.4.6 Attentional Global Average Pooling 20

2.5 Additional Qualitative Results . 21

2.6 Conclusion . 26

3 Semantic Dictionaries for Adversarial Example Detection 27

3.1 Introduction . 27

3.2 Related Work . 29

3.3 Method . 31

3.3.1 Interpretable BoW Networks . 31

3.3.2 Detecting Adversarial Examples 34

3.4 Experiments . 34

ix

Contents

3.4.1 Visualizing BoW Codewords . 35

3.4.2 Detecting Adversarial Samples 35

3.4.3 Detecting Out-of-distribution Samples 42

3.4.4 Architectures . 42

3.4.5 Additional Visualizations . 43

3.5 Conclusion . 47

4 Towards Robust Fine-grained Recognition by Maximal Separation of

Discriminative Features 49

4.1 Introduction . 49

4.2 Related Work . 52

4.3 Interpreting Adversarial Attacks . 53

4.4 Method . 54

4.4.1 Architecture . 55

4.4.2 Discriminative Feature Separation 56

4.5 Experiments . 57

4.5.1 Experimental Setting . 57

4.5.2 Results on CUB 200 . 58

4.5.3 Results on Stanford Cars . 63

4.5.4 Training Details . 64

4.5.5 Qualitative Results . 66

4.6 Conclusion . 72

5 Indirect Local Attacks for Context-aware Semantic

Segmentation Networks 73

5.1 Introduction . 73

5.2 Related Work . 76

5.3 Indirect Local Segmentation Attacks . 78

5.3.1 Indirect Local Attacks . 78

5.3.2 Adaptive Indirect Local Attacks 79

5.3.3 Universal Local Attacks . 80

5.3.4 Adversarial Attack Detection . 81

5.4 Experiments . 81

5.4.1 Indirect Local Attacks . 83

5.4.2 Adaptive Indirect Local Attacks 84

5.4.3 Universal Local Attacks . 85

5.5 Attack Detection . 87

5.5.1 Image-Level Detecton . 88

5.5.2 Pixel-Level Detection . 89

5.5.3 Implementation Details . 90

5.6 Additional Results . 95

5.7 Conclusion . 103

x

Contents

6 Universal, Transferable Adversarial Perturbations for Visual Object

Trackers 105

6.1 Introduction . 105

6.2 Related Work . 108

6.3 Methodology . 109

6.3.1 Overall Pipeline . 109

6.3.2 Training the Generator . 110

6.3.3 Universal Perturbations: Inference time 112

6.4 Experiments . 113

6.5 Results . 114

6.6 Ablation Studies . 119

6.6.1 Effect of Hyperparameters . 120

6.7 Additional Qualitative Results . 122

6.8 Conclusion . 129

7 Learning Transferable Adversarial Perturbations 131

7.1 Introduction . 131

7.2 Related Work . 133

7.3 Methodolgy . 134

7.4 Experiments . 136

7.4.1 Transferability to Unknown Target Model 138

7.4.2 Transferability to Unknown Target Data 139

7.4.3 Extreme Cross-Domain Transferability 140

7.4.4 Transferability to Robust Models 141

7.4.5 Cross-Task Transferability Analysis 142

7.4.6 Additional Analysis . 143

7.4.7 Additional Quantitative Results 144

7.4.8 Additional Visualizations . 146

7.4.9 Ablation Study . 147

7.5 Conclusion . 161

8 Understanding Pose and Appearance Disentanglement in 3D Human

Pose Estimation 163

8.1 Introduction . 164

8.2 Related Work . 165

8.3 Disentangled Human Pose Estimation Networks 167

8.4 Training Details . 168

8.5 Disentanglement w.r.t. the Self-Supervised Network 168

8.5.1 Effect of the Appearance Vector on Synthesized Images 169

8.5.2 Effect of the Pose Vector on Synthesized Images 171

8.6 Disentanglement w.r.t. the 3D Pose Regressor 174

8.6.1 Appearance-only Attack Framework 174

8.6.2 Appearance-only Attack Results 176

xi

Contents

8.7 Discussion . 177

8.8 Conclusion . 185

9 Conclusion 187

9.1 Summary . 187

9.2 Lessons Learnt and Retrospective Comments 189

9.3 Limitations and Future Work . 190

Bibliography 193

Curriculum Vitae 217

xii

1 Introduction

Out of your vulnerabilities will come your greatest strength - Sigmund Freud

Automatically recognizing and segmenting objects in images and videos is central to a

wide variety of application domains. Therefore, visual recognition has been one of the

fundamental goals of Computer Vision since its inception. In 2012, the Computer Vision

community underwent a revolution, started by the impressive results of the AlexNet [136]

on the ImageNet object recognition challenge. Although Deep Learning has a long history

in visual recognition, e.g., [140], it had until then remained only a marginal topic due to

the lack of large, publicly available datasets and the lack of computation power. With the

progress in GPUs and the ever-growing availability of images online, Deep Learning has

led to impressive advances and achieved state-of-art in domains such as image recognition

[101, 237], domain adaptation [164, 244, 258], face recognition [98, 123, 203], object

detection [158], semantic segmentation [71, 163, 311, 311], and video classification

[119, 275, 295]. Increasingly deeper architectures are being proposed [99, 220, 245],

with more advanced classification layers [74, 128] and more effective optimization

strategies [124]. DNNs are now well-established in many safety-critical applications such

as autonomous driving, face recognition, and surveillance systems.

Even though the discriminative power of deep neural networks (DNNs) is nowadays

unquestionable, one of the research challenges that remains is understanding the reasons

behind a network’s inference, e.g., how did the trained model arrive at the particular label.

DNNs are often criticized as black boxes without the ability to explain the inference to a

specific decision intuitively. For instance, understanding the reason for a particular pre-

diction in the medical domain is essential to achieving the trustworthiness of the deployed

model. In this regard, early efforts such as [232, 297, 316] were proposed to identify the

most relevant regions responsible for prediction, followed by visualizing neurons [195],

interpretable architectures [29] and other posthoc methods [213]. Furthermore, obtaining

plausible explanations in a human-understandable way is indispensable to dissecting

1

Chapter 1. Introduction

the internal workings of DNNs. Therefore, the topic of interpretability has received

considerable attention, which empowers us to understand the strengths and weaknesses

of DNNs and analyze the deeper reasons for the failures of a given data point.

Despite the remarkable progress, serious concerns have arised ever since the DNNs were

discovered to be vulnerable to adversarial examples [246] crafted by adding imperceptible

perturbations to clean images. Moreover, it was also demonstrated in [315, 317] that

adversarial perturbations can be transferred to an unknown target network or can be

fooled by query-based attacks [4] with access to output layer predictions. Besides, the

attacks were extended to other vision tasks such as object detection [284], semantic

segmentation [8], and face recognition [85, 282]. The implications of malicious attacks are

even more significant for DNNs deployed in real-world systems, e.g., autonomous driving

and biometric authentication. Given its utmost relevance to safety-critical applications,

thus understanding the reasons for its vulnerability and exploring different ways to

construct transferable black-box attacks is an important direction toward attaining truly

robust models.

Much effort has been put into the different ways to attack [26, 137, 201] given the input

image. In contrast to the image-dependent attacks, [184] showed that the DNNs are

indeed vulnerable to image-agnostic precomputed universal perturbation. In addition,

adversarial examples are proven transferable across multiple architectures [315, 317].

Both these findings point to an underlying perspective deeply connected to the internal

working mechanism of DNNs. We thus aim to understand the behavior of DNNs to

adversarial attacks from the perspective of interpretability. By understanding the attacks

through interpretable models, one can gain not only valuable directions against future

adversarial attacks but also opens up new ways to defend against them.

In this thesis, we propose several approaches to explain the behavior of DNNs and

study the mechanism of adversarial examples. Specifically, our work seeks to understand

the reasons for predicting a particular label through intrinsically interpretable BoW

architectures. In doing so, we expand our present understanding of DNNs limitations and

also use as a tool to design effective and intuitive attack strategies across diverse tasks.

Furthemore, we focus on the transferability of adversarial attacks in the extreme black-

box case where the attacker has zero knowledge about target architectures, tasks, and

datasets. Besides, we propose an attentional-based framework to improve the adversarial

robustness with metric learning. Overall, the findings in this thesis provides an insightful

perspective on prediction mechanism underlying the DNNs and presents meaningful

adversarial attacks by understanding their internal representation.

In the remainder of this chapter, we provide a brief background on adversarial attacks.

We then summarise our core contributions and finally present the outline at the end of

the chapter.

2

1.1. Background

Figure 1.1 – Adversarial attacks on different computer vision tasks. By adding
small perturbation `∞ = 10 to the input images, the output predictions change drastically
over wide range of computer vision tasks. The three images in the first row are chosen
from ImageNet [46], Pascal VOC [60] and Cityscapes [40], respectively.

1.1 Background

Let us first briefly introduce the topic of adversarial attacks for context and familiarity.

DNNs were first shown to be vulnerable to adversarial, human-imperceptible perturbations

in the context of general image recognition. Such attacks were initially studied in [246],

quickly followed by the simple single-step Fast Gradient Sign Method (FGSM) [79] and

its multiple-step BIM variant [137]. In [52], the attacks were stabilized by incorporating

momentum in the gradient computation. Other popular attacks include DeepFool [182],

which iteratively linearizes the classifier to compute minimal perturbations sufficient for

the sample to cross the decision boundary, and other computationally more expensive

attacks, such as CW [26], JSMA [201], and others [189, 243, 286]. As of today, Projected

Gradient Descent (PGD) [168], which utilizes the local first-order network information

to compute a maximum loss increment within a specified `∞ norm-bound, is generally

considered as the most effective attack strategy.

While the above methods are image-dependent, the existence of Universal Adversarial

Perturbation (UAP) was first shown in [184], considering the task of learning a single

3

Chapter 1. Introduction

perturbation that can fool a classifier independently of the input image. In parallel to

UAPs, several works have shown that iterative adversarial attack strategies could be

transferred across architectures [104, 183, 184]. The above-mentioned methods, however,

are computationally expensive at inference time [26, 52, 102, 104, 168, 201].

On the other hand, Generative adversarial perturbations (GAP) were first introduced

in [212]. In particular, [212] showed that a generator network can be used to craft a

UAP that transform an input image to an image-dependent perturbation. Similarly, [88]

introduced the advGAN generative framework to learn to produce adversarial pertur-

bations, and further proposed to make use of distillation to perform black-box attacks.

Based on the observation that the effectiveness of these two methods strongly depends

on the availability of data from the target domain during training, [191] introduced

the relativistic cross-entropy loss, which was shown to better generalize across datasets.

Furthermore, [148] proposed to generate UAPs by transforming the generator’s output

using a regional norm layer that enforces perturbation homogeneity. Along with above

two broad themes, several decision-based attacks [4, 20, 34, 54] have been proposed to

study the robustness of DNNs.

Motivated by the observations made in the context of image classification, adversarial

attacks were extended to other tasks such as semantic segmentation, object detection, and

object tracking, among others as illustrated in Figure 1.1. They have now been studied

in almost every computer vision task to understand the limitations of DNNs. In [8],

the effectiveness of attack strategies designed for classification was studied for different

segmentation networks. In [284], a dense adversary generation attack was proposed,

consisting of projecting the gradient in each iteration with minimal distortion. In [92],

a universal perturbation was learnt using the whole image dataset. Furthermore, [10]

demonstrated the existence of perturbations that are robust over chosen distributions of

transformations. In the task of VOT, SPARK [84] computes incremental perturbations

by using information from the past frames; [31] exploits the full video sequence to attack

the template by solving an optimization problem relying on a dual attention loss. Besides

the mainstream applications, adversarial tasks were extended to a host of other tasks

such as depth prediction [271, 309], pose estimation [108], optical flow [129, 218, 276],

superresolution [37, 290], face recognition [55, 80, 85, 282], perception models [150, 240,

289].

1.2 Contributions

Having briefly introduced the background on adversarial attacks, we now present the

contributions made in this thesis.

In the first broad line of work, we focus on understanding the underlying decision

mechanism of deep neural networks to adversarial examples. To this end, we propose

4

1.2. Contributions

architectures to interpret the decisions of DNN, which also allows understanding the

reasons for the success of adversarial attacks. We then leverage the interpretable

architectures to propose a framework to detect adversarial attacks and improve the

robustness using attention-based feature regularization. The following works contribute

to the above theme.

• Attention-Aware Deep Structured Representation Learning. Deep struc-

tured representation learning strategies such as Bag of Words and VLAD are

popular for their ability to provide interpretability to output decisions through

prototypes. However, they typically aggregate local features from the entire image,

ignoring the fact that, in complex recognition tasks, some regions provide much

more discriminative information than others. Therefore, our initial work introduces

an attentional structured representation learning framework that incorporates an

image-specific attention mechanism within the aggregation process to remove the

influence of background regions.

• Adversarial Attack Detection. We then leverage the interpretable BoW-based

structured representation networks to detect the adversarial examples. We build

upon the intuition that, while adversarial samples look very similar to natural

images, they should activate prototypes with a significantly different visual repre-

sentation to produce the incorrect predictions. We, therefore, cast the adversarial

example detection problem as that of comparing the input image with the most

highly activated visual codeword.

Similarly, we propose to detect the adversarial attacks in the semantic segmentation

by comparing with the resynthesized image from the predicted label map instead

of the codeword image. Specifically, we employ a pretrained pix2pix generator that

outputs a scene image given the label map.

• Adversarial Robustness by Discriminative Feature Separation. We con-

duct a deeper analysis of the success of adversarial attacks in the fine-grained

domain by visualizing the activated prototypes. Motivated by our findings, we

improve the adversarial robustness by introducing an attention-based regularization

mechanism that maximally separates the latent features of class-specific discrimi-

native regions while minimizing the contribution of the non-discriminative regions

to the final class prediction. Furthermore, by pushing the discriminative regions

apart and discarding the background regions, we make the attackers’ task difficult,

as evidenced through different white-box, transfer, and query-based attacks.

In the second part of this thesis, we shift our focus to designing adversarial attacks to

better understand the DNNs limitations on multiple tasks such as image recognition,

semantic segmentation, pose estimation, and object tracking. Our results enable us

to expand our knowledge of the DNNs internal workings and understand their critical

5

Chapter 1. Introduction

vulnerabilities before deploying them in real-world scenarios. With applications spanning

diverse domains in computer vision, we believe the following works will contribute to a

deeper understanding of the DNNs to adversarial attacks.

• Indirect Local Attacks on Context-aware Segmentation Networks. We

show for the first time that the state-of-the-art segmentation networks that exploit

surrounding context are susceptible to our indirect local attacks, where the per-

turbations are confined to a small image region that does not overlap with the

area that the attacker aims to fool. We then extend this to formulate an adaptive

attack using group sparsity prior aiming to find the optimal image location to

perturb non-overlapping from the object of interest while preserving the labels at

this perturbed location and producing a realistic-looking segmentation map. In

addition, we extend the image-classification-based adversarial detection approaches

to detect the attacks both at the image and pixel level.

• Universal Perturbations for Visual Object Trackers. Unlike the image

recognition or semantic segmentation, where the label set is predefined to a fixed

number of classes, visual object trackers aim to track a novel object that is non-

overlapping with the objects of training time. Further, the attacker’s task is many

levels complicated due to the requirement of generating perturbations in real-time.

To overcome these specific challenges, we discover the existence of a universal

perturbation that is image agnostic and fools, black-box trackers, at virtually no

cost of perturbation. At the core of our framework, we propose to learn to generate

a single perturbation from the object template only that can be added to every

search image and still successfully fool the tracker for the entire video. Consequently,

the resulting generator outputs perturbations that are quasi-independent of the

template, thereby making them universal perturbations with high attack efficiency.

• Transferable Adversarial Perturbations through Mid-level Feature Sep-

aration. We focus on the transferability of perturbations in a zero-query setting

where the attacker has no knowledge about the target system. Specifically, we study

the transferability of generator-based attacks when the conditions at inference time

differ from the training ones in terms of the target architecture, target data, and

target task. Our in-depth analysis on the functioning of the DNNs identifies the

mid-level features extracted by the intermediate layers as the common ground

to attack across different architectures, datasets, and tasks. Motivated by this

observation, we introduce a loss function to disrupt the mid-level features inorder

to learn a highly effective, transferable perturbation generator.

• An Adversarial Attack Perspective on Appearance-Pose Disentangle-

ment. We conduct a deeper analysis of the disentanglement of internal latent

representations of pose and appearance in self-supervised 3D pose estimation

networks. We design an adversarial strategy focusing on generating semantic

6

1.2. Contributions

appearance changes of the subject, against which we argue that a disentangled

pose-estimation network is expected to be more robust. However, our analyses, as

were also corroborated by image synthesis experiments and quantitative metrics,

show that disentanglement in the three state-of-the-art disentangled representation

learning frameworks is far from complete. Furthermore, we provide evidence to

substantiate that the pose latent codes contain significant appearance information

and are thereby vulnerable to semantic appearance attacks.

Thesis Organisation

The remainder of the thesis is organized as follows. In Chapter 2, we introduce an

attention-aware deep structured representation framework to remove the influence of

non-discriminative regions in the aggregation process. In Chapter 3, we present an

approach to detect the adversarial examples in the gray and black-box settings by

leveraging the Bag of visual words architectures. Chapter 4 proposes a framework to

improve the adversarial robustness by maximal separation of the discriminative regions

through regularising the latent space with attention-based clustering and separation losses.

Chapter 5 demonstrates that context-dependent networks are susceptible to indirect local

attacks far away from the attacked region. Chapter 6 discovers the existence of universal

perturbation that is image agnostic and fools black-box trackers at virtually no cost of

perturbation. Chapter 7 illustrates that the disrupting the mid-level features extracted

by the intermediate layers of DNNs as common ground across different architectures,

datasets, and tasks, to learn a highly effective transferable perturbation generator.

In Chapter 8, we focus on the disentanglement of pose and appearance and provide

evidence that the pose latent codes contain significant appearance information through

an adversarial strategy focusing on generating natural appearance changes of the subject.

7

2 Attention-Aware Structured

Representation Learning

Structured representations, such as Bags of Words, VLAD and Fisher Vectors, have

proven highly effective to tackle complex visual recognition tasks. As such, they have

recently been incorporated into deep architectures. However, while effective, the resulting

deep structured representation learning strategies typically aggregate local features from

the entire image, ignoring the fact that, in complex recognition tasks, some regions

provide much more discriminative information than others.

In this chapter, we introduce an attentional structured representation learning framework

that incorporates an image-specific attention mechanism within the aggregation process.

Our framework learns to predict jointly the image class label and an attention maps

in an end-to-end fashion and without any other supervision than the target label. As

evidenced by our experiments, this consistently outperforms attention-less structured

representation learning and yields state-of-the-art results on standard scene recognition

and fine-grained categorization benchmarks.

2.1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have emerged as the de facto

standard for visual recognition. Nevertheless, while they achieve tremendous success

at classifying images containing iconic objects, their performance on more complex

tasks, such as scene recognition and fine-grained categorization, remains comparatively

underwhelming. This is partly due to their simple pooling schemes that fail to model

the dependencies between local image regions. By contrast, in the realm of handcrafted

features, structured representations, such as Bags of Words (BoW) [125, 216, 239],

Vectors of Locally Aggregated Descriptors (VLAD) [6, 109, 110] and Fisher Vectors (FV)

[210, 229], have been shown to be highly discriminative thanks to their aggregation of

local information. As a consequence, they have started to re-emerge in the deep networks

realm, with architectures such as NetVLAD [5] and Deep FisherNet [247].

9

Chapter 2. Attention-Aware Structured Representation Learning

Figure 2.1 – Attentional structured representation network. Our network consists
of two branches with a shared base feature extraction CNN. The attention module
produces class-specific attention maps, which are then incorporated into the VLAD
module that outputs an attention-aware VLAD representation. Note that, while we focus
on the VLAD case here, as evidenced by our experiments, our approach applies to any
structured representation.

While effective for complex visual recognition tasks, these structured representations,

whether based on handcrafted features or incorporated into deep networks, suffer from

one drawback: They aggregate local information from the entire image, regardless of

how relevant this information is to the recognition task. In practice, however, while

certain image regions contain semantic information that contribute to the target label,

others clearly don’t. For example, in the image shown in Fig. 2.1, from the MIT-

Indoor dataset [215], the region depicting washing machines gives us a much stronger

cue of the class laundry than the regions containing the person and the background.

Incorporating information from these latter two regions, which can appear in many other

scene categories, will typically yield less discriminative image representations.

In this chapter, we address this by introducing a novel deep attentional structured

representation network for visual recognition. Our network incorporates an image-specific

attention mechanism that encourages the learnt structured representation to focus on

the discriminative regions of the image. We then learn to predict jointly the input image

class label and the spatial attention map without requiring any annotations for the latter.

Our framework is depicted by Fig. 2.1 for the case of a VLAD aggregation strategy. It

consists of two streams that share a base network extracting deep features: The attention

module and the VLAD module. The attention module, based on the framework of [74],

learns a set of filters that transform the deep features into C heatmaps encoding attention

for the C classes of interest. The VLAD module then exploits these heatmaps to form

an attention-aware VLAD vector from the deep features of the base network. We train

our network with a combination of two losses that encourage both the attention maps

and the final attention-aware VLAD representation to be discriminative. Note that,

10

2.2. Related Work

while Fig. 2.1 focuses on the VLAD case, as evidenced by our experiments, our approach

generalizes to any local feature aggregation strategy.

In short, we contribute the first systematic integration of an attention mechanism within

a structured image representation learning framework. We demonstrate the benefits of

our approach on four challenging visual recognition tasks, including scene recognition

on MIT-Indoor [215] and fine-grained categorization on the UCSD Birds [259], FGVC

Aircrafts [172] and Stanford Cars [133] datasets. Our attentional structured representation

learning strategy consistently outperforms its standard attention-less counterpart and

yields state-of-the-art results on several of the above-mentioned datasets.

2.2 Related Work

Over the years, visual recognition has attracted a huge amount of attention in Computer

Vision. Before the deep revolution in 2012, most methods adopted a two step pipeline

consisting of extracting handcrafted features and training a classifier, such as Support

Vector Machines [91] or Boosting [70]. In this pipeline, the core Computer Vision

research was targeted towards extracting discriminative image features. In particular,

Bags of Visual Words (BoW) [125, 216, 239], based on local features such as SIFT [165]

or BRIEF [24], have proven effective for image recognition. Later, such histogram-

based features were extended to VLAD [109, 110] and Fisher Vectors [210, 229], which

model higher-order statistics of the data w.r.t. the codewords. After the remarkable

performance of AlexNet [136], much of the visual recognition research turned to deep

learning strategies. While many new architectures do not explicitly focus on extracting

structured representations, some work has nonetheless attempted to leverage the lessons

learnt from handcrafted features. In particular, [77] performs multi-scale orderless

pooling of deep CNN features, and [38, 50] compute Fisher encodings of similar deep

features. In contrast with these approaches that still separate feature extraction from

classifier learning, NetVLAD [5] and Deep FisherNet [247] constitute the first attempts at

introducing learnable VLAD and Fisher Vector layers, respectively, within an end-to-end

learning formalism. More recently, [149] proposed to make use of a mixture of factor

analyzers to model an accurate Fisher Vector with full covariance matrix. While the

previous methods all rely on histogram-based descriptors, in the context of fine-grained

categorization and texture recognition, other structured representations, in the form of

covariance matrices have been used [154, 155, 292]. In [236], a generalization of average

and bilinear pooling was proposed to automatically learn an intermediate pooling strategy

during training. In any event, all these methods, whether using hand-crafted features

or relying on deep learning, aggregate local features from the entire image, without

accounting for the fact that only parts of the image contain information that contributes

to the target class label. This will typically reduce the discriminative power of the

resulting representations.

11

Chapter 2. Attention-Aware Structured Representation Learning

For complex tasks, such as scene classification and fine-grained categorization, some

research has nonetheless attempted to focus the feature extraction process on discrimina-

tive image regions. In the context of scene recognition, this was achieved by modeling

the scene with mid- (or high-)level representations [146], such as detected semantic vi-

sual attributes [207], patch-based codewords obtained via discriminative clustering [238]

and object-oriented representations learnt from a manually-created database of typical

scene objects [273]. For fine-grained categorization, several works exploit bounding box

annotations to learn part detectors [302, 306]. The use of such additional annotations

was then removed in [281], which learns part templates by clustering deep features. More

recently, [72, 314] introduced end-to-end learning strategies to automatically identify

discriminative regions for fine-grained recognition.

The above-mentioned works typically reason about the notion of parts, or objects in a

scene. In the rare cases that don’t require part annotations during training [72, 314], the

input image is first processed globally to identify regions with high attention, which are

then cropped into multiple parts that are processed individually. By contrast, our network

processes the input image in a single forward pass, without explicitly relying on the

notion of parts. In essence, these methods are therefore tailored to the specific problem

they tackle. By contrast, here, we exploit the more general notion of visual attention

and produce heatmaps encompassing the discriminative regions in the image. This

does therefore not require any prior knowledge about the data at hand. Our formalism

builds upon the attention framework of [74], but with the additional goal of leveraging

structured representations. Moreover, the attention branch is not limited to [74] but can

be replaced with latest attention architectures such as self-attention [301] and multi-head

attention frameworks in vision transformers [56]. As a consequence, and as evidenced by

our results, our approach yields higher accuracies than both attention-less methods and

unstructured attentional pooling in all the tasks we tested it on.

2.3 Method

In this section, we introduce our novel attentional structured representation learning

framework depicted by Fig. 2.1. We first present the structured representation and

attention modules, and finally our approach to integrating them in an end-to-end learning

formalism.

2.3.1 Structured Representation Module

Structured representations aggregate local descriptors into a global feature vector of

fixed size using a visual codebook. In particular, here, we focus on VLAD, which has

proven highly effective. As will be evidenced by our experiments, however, our framework

generalizes to other aggregation strategies.

12

2.3. Method

In contrast to BoW that only store information about which codeword each local

descriptor is assigned to, VLAD also computes the residual distance of the descriptor to

the codeword. To incorporate this into a deep learning framework, the hard codeword

assignment of each descriptor is replaced by a soft one. More specifically, let I be an image

input to a CNN, and X ∈ RW×H×D the feature map output by the last convolutional

layer, with spatial resolution W × H and D channels. X can then be thought of as

N = W ×H local descriptors xi of dimension D. Given a codebook B with K codewords,

VLAD produces a DK-dimensional representation of the form

v = [vT0 ,v
T
1 , · · · ,vTK]T , (2.1)

where vk ∈ RD is given by

vk =

N∑
i=1

ak(xi) (xi − bk) , (2.2)

with bk the k-th codeword of codebook B. The values ak(xi) represent the assignment

of descriptor xi to codeword bk. In the standard VLAD formalism, these assignments

are binary, with each descriptor being assigned to a single codeword. Within a deep

learning context, for differentiability, these assignments can be relaxed and expressed as

ak(xi) =
e−α‖xi−bk‖2∑
k′ e
−α‖xi−bk′‖

2 , (2.3)

with α a hyperparameter defining the softness of the assignments.

The resulting VLAD vector then acts as input to the classification layer of the deep

network. While effective, as discussed above, the VLAD representation aggregates

information from the entire image, regardless of whether the local descriptors correspond

to discriminative regions or not. Below, we first discuss a general attention module,

which is able to identify relevant image regions, and then introduce our approach to

incorporating this information within our structured representation learning formalism.

2.3.2 Attention Module

It has been shown multiple times that CNNs were not only effective at predicting

the class label of an image, but could also localize the image regions relevant to this

label [114, 233, 316]. Most existing approaches to performing such a localization, however,

work as a post-training step. By contrast, our attention module, based on the framework

of [74], produces attention maps that are actively used during training. Furthermore,

it combines top-down attention, modeling class-specific information, with bottom-up

attention, modeling class-agnostic information, or, in other words, a form of image saliency.

Such integration [193] of top-down cues [12, 304, 316] with bottom-up attention [226]

13

Chapter 2. Attention-Aware Structured Representation Learning

modulates the image saliency map to ignore non-relevant background regions of the

target.

Specifically, let X be the same final W × H × D convolutional feature map as in

Section 2.3.1. Our attention module consists of an additional 1× 1 convolutional layer

with one class-agnostic filter with parameters wca ∈ RD×1 and C class-specific filters

whose parameters can be grouped in a matrix Wcs ∈ RD×C , where C is the number

of classes of the problem at hand. This convolutional layer produces a class-agnostic

heatmap Hca and class-specific heatmaps (H1
cs, · · · ,HC

cs), each of spatial resolution

W ×H. Each class-specific heatmap is then multiplied element-wise by the class-agnostic

one, yielding C attention maps (H1, · · · ,HC).

Training the attention module can be achieved by global average pooling of each of

the attention maps, which produces a score for each class. These scores are then

passed through a softmax layer, and the resulting probabilities {pc} used in a standard

cross-entropy loss

Latt = − 1

S

S∑
s=1

log(pc∗(Is)) , (2.4)

where S is the number of samples in a mini-batch and pc∗(Is) is the probability of

the ground-truth class for sample s. This was the procedure used in [74] to train an

attentional deep network. Below, we propose to rather make use of the attention maps

to further build a more discriminative structured representation. As evidenced by our

results, this allows us to achieve consistently higher recognition accuracies.

2.3.3 Attention-aware Feature Aggregation

Our goal is to make use of the attention maps when aggregating the local descriptors

into a structured representation. To this end, instead of global average pooling the maps,

we generate a single attention map, which can be interpreted as a weight w(xi) for every

descriptor xi, and is defined as

w(xi) =
max
l

Hl
i∑

i′
max
l

Hl
i′
, (2.5)

where Hl
i indicates the attention-weight corresponding to feature xi in the attention map

of class l from Section 2.3.2. The resulting attention map has the same spatial resolution

as the final deep feature map. We then use it to re-weight the aggregation scheme of

Eq. 2.2. Specifically, we re-write Eq. 2.2 as

vk =
N∑
i=1

w(xi)ak(xi) (xi − bk) . (2.6)

14

2.3. Method

Following common practice [5, 110], we perform L2 normalization of each vk to remove

burstiness, followed by a final L2 normalization of the entire vector v. The resulting

representation is then passed to a classification layer.

Ultimately, our network combines an attention module with a structured representation

learning one. Both modules share the base network up to the final convolutional feature

map. To train our network, we first pre-train the base network with the attention

module only using Latt from Eq. 2.4. We then continue training the entire network in an

end-to-end manner by minimizing a loss of the form

L = Lcls + λLatt , (2.7)

where Lcls is a cross-entropy loss on the output of the classifier acting on the structured

representation v, and λ is a hyper-parameter setting the relative influence of both terms.

At test time, we then take the prediction from the VLAD branch of the network.

Note that training is not only done w.r.t. the network parameters, but also w.r.t. to the

codebook B. As suggested in [5], and motivated by [6] to adapt VLAD descriptors to

new datasets, we decouple the soft assignment ak(xi) from the codeword bk. That is, we

re-write the assignment ak(xi) of Eq. (3.2) as

ak(xi) =
es

T
k xi+hk∑

k′ e
sT
k′xi+hk′

, (2.8)

where hk = −α ‖bk‖2 and sk = 2αbk are treated as independent parameters.

Geometric Interpretation of Attention

Figure 2.2 – Geometric interpreta-
tion of attention

Consider the features of two images from same

class with different backgrounds that are assigned

to the same codeword, depicted as a Voronoi cell

in Fig. 2.2. The features with high attention are

shown in blue and those with low attention in red

and orange, respectively. While ignoring attention

would yield residual vectors pointing in almost op-

posite directions, our attention-aware aggregation

produces vectors with high cosine similarity, shown

as blue arrows. The inverse reasoning can be made

for images from two different classes but containing

common elements that are irrelevant to the class labels: By ignoring attention, these

shared elements would yield components with high cosine similarity, thus decreasing the

discriminative power of the complete VLAD vector. Attention allows us to discard these

shared elements.

15

Chapter 2. Attention-Aware Structured Representation Learning

2.4 Experiments

We first present the datasets used in our experiments and implementation details for

our model. Then, we demonstrate the benefits of our attention-aware structured repre-

sentation learning framework over its attention-less counterpart and over unstructured

attentional pooling, and finally compare our results to the state of the art on each dataset.

2.4.1 Datasets

We experiment on the MIT-Indoor scene recognition dataset and on three fine-grained

categorization datasets, namely CUB-200, Stanford cars and aircraft. We discard the

part annotations but conduct experiments with and without bounding box annotations

on fine-grained datasets.

MIT-Indoor is a widely used benchmark dataset for scene classification with 67 classes.

We use the train/test split of [215] consisting of roughly 80 training and 20 test images.

CUB-200 is a challenging dataset with 11, 788 images of 200 bird species, with an

average of 60 images per class. The dataset has extremely large variations in pose, size

and viewpoints. We use the standard train/test split of [259].

FGVC-Aircraft contains 100 different aircraft models with roughly 100 images for each

model. We adopt the same train/test split as in [172].

Stanford Cars is a 196 class dataset [133] of 8144 training images and 8041 test images.

Heavy background clutter makes this dataset challenging.

2.4.2 Implementation Details

We use the VGG-16 [237] model pre-trained on Imagenet [136] as our base model and that

of the baselines, with the conv5 3 features before ReLU activation as final convolutional

features for aggregation. Following prior work [149, 155], we resize the images to 512×512

for MIT-Indoor, and 448×448 for the fine-grained datasets. Data augmentation is carried

out on all datasets by performing random cropping and horizontal flipping. At test time,

we flip the image and average the predictions for the original and flipped image. For

structured representations, we fix the codebook size to K = 64 for VLAD and K = 4096

for the BoW experiments. We initialize the weights of the VLAD layer with K-means

clustering of the conv5 3 features. We set α in Eq. 3.2 to 100, and λ in Eq. 2.7 to 0.4.

Training: We use the ADAM optimizer [124] with parameter ε = 10−4, batch size of 16

and a weight decay of 0.0005 for all experiments. We first pre-train the attention network

with η = 0.0001 for 20 epochs. For scene recognition, we then train the classification layer

with η = 0.01 for 5 epochs, and further train the layers above conv5 with η = 0.00001

16

2.4. Experiments

Pooling Anno. Birds Cars Aircrafts MIT-Indoor
VGG-16 BBox 79.9 88.4 86.9 -

Attention BBox 77.2 90.3 85.0 -
NetBoW BBox 74.4 89.1 85.6 -

Attentional-NetBoW BBox 80.5 91.2 89.3 -
NetVLAD BBox 82.4 89.8 88.0 -

Attentional-NetVLAD BBox 85.5 93.5 89.2 -
VGG-16 76.0 82.8 82.3 76.6

Attention 77.0 87.4 81.4 77.2
NetBoW 68.9 85.2 79.9 76.1

Attentional-NetBoW 76.9 90.6 88.3 76.6
NetVLAD 80.6 89.4 86.4 79.2

Attentional-NetVLAD 84.5 92.8 88.8 81.2

Table 2.1 – Comparison of our attentional structured pooling scheme with attention-less
(VGG-16, NetBoW, NetVLAD) and structure-less (Attention) baselines. Our approach
consistently outperforms these baselines, thus showing the benefits of pooling only the
relevant local features into a structured representation.

for 25 epochs. For the fine-grained datasets, we train with η = 0.01 for the classification

layer and η = 0.0001 for the layers above conv5 for 50 epochs, with a decay rate of 0.1

every 15 epochs.

2.4.3 Results

We first compare our approach to attention-less structured representation learning and

to direct attentional pooling [74], and then to the state of the art on each dataset. To

be consistent with prior work [149, 155], we report the average accuracy per class on

MIT-Indoor and the average per image accuracy on the fine-grained datasets.

To evaluate the benefits of our attention-aware feature aggregation framework, we compare

it with counterparts that do not rely on attention. In particular, we report results with

VLAD pooling, as discussed in Section 2.3, but also with BoW representations, which can

easily be obtained by using the soft assignments to form histograms. To further evidence

the benefits of using structured representations, we compare our results with those of the

direct attentional pooling strategy of [74], which relies on a global average pooling of the

attention masks. The results of this comparison for all datasets are reported in Table 2.1,

where we also show the accuracy of the standard VGG-16 model, with fully connected

layers transformed into convolutional ones followed by global average pooling. Note that

our Attentional-NetVLAD outperforms the baselines in all cases, both when using and

not using bounding boxes for fine-grained recognition. Note also that using attention

consistently helps improving the results, thus showing the importance of reasoning at

the level of local features rather than combining information from the entire image in

these challenging recognition tasks.

17

Chapter 2. Attention-Aware Structured Representation Learning

casino studio music operating room video store

Figure 2.3 – Attention maps for MIT-Indoor. Each column shows an image from
a different class (indicated above the image). Note that the maps focus on regions
indicative of the label, ignoring the regions common to multiple classes, such as the
people.

In Figs. 2.3 and 2.4, we provide some representative qualitative results of the attention

maps obtained with our method for MIT-Indoor and the fine-grained datasets, respectively.

For scene recognition, note that our network learnt to focus on the discriminative regions,

such as the casino table and the piano, while ignoring regions shared by other classes,

such as people. Similarly, for fine-grained categorization, the network is able to locate

discriminative parts, such as the beak and the tail of birds, the brand logo and the head

lights of cars, and the engine and landing gears of airplanes. This clearly evidences that

our model can, in a single pass, find the regions of interest that define a class.

Finally, we compare our results with the state of the art on each individual dataset. These

comparisons are provided in Table 2.2 for MIT-Indoor and Table 2.3 for the fine-grained

datasets. In the case of scene recognition, we outperform all the baselines, including

MFAFVNet [149], which relies on an accurate Fisher Vector encoding of 500K dimensions

based on multi-scale image patches. For fine-grained recognition, we outperform all

the baselines when relying on bounding boxes. Without bounding boxes, we achieve

accuracies only slightly lower than the state-of-the-art methods, such as [72, 314], which

were tailored to the fine-grained categorization problem, and rely on a multi-stage

approach involving cropping parts and processing them separately. By contrast, our

approach makes use of a single forward pass through a network and generalizes to any

complex recognition scenario.

18

2.4. Experiments

Figure 2.4 – Attention maps for fine-grained datasets. Our method is able to
localize discriminative parts of birds (tail, beak), aircrafts (engine, landing gear) and
cars (lights, logo).

2.4.4 Failure Cases

Finally, in Fig. 2.5, we show some typical failure cases of our approach, such as attention

to background regions on Birds dataset.

Figure 2.5 – Failure cases of our model particularly due to incorrect attention.

2.4.5 Ablation Study

We first evaluate the influence of the hyper-parameter λ in Eq. 7, which defines the

strength of the attention module loss, on the classification accuracy. To this end, we

evaluate our approach for different values of λ on the CUB-200 bird dataset, after 20

training epochs and without performing any data augmentation (image flipping) at

inference time. The results of this experiment are provided in Table 2.4. Note that

accuracy is stable over a very large range of values, thus showing that our approach is

robust to the choice of this parameter.

19

Chapter 2. Attention-Aware Structured Representation Learning

Method Avg. Acc.
Deep FisherNet [247] 76.5

CBN [73] 77.6
NetVLAD [5] 79.1
H-Sparse [157] 79.5
B-CNN [155] 79.5
SMSO [292] 79.7
FV+FC [38] 81.0

MFAFVNet [149] 81.1
Ours 81.2

Table 2.2 – Comparison
with the state of the art
on MIT-Indoor.

Method Anno. Birds Cars Aircraft
MG-CNN [260] BBox 83.0 - 86.6

B-CNN [155] BBox 85.1 - -
PA-CNN [132] BBox 82.8 92.8 -

Mask-CNN [267] Parts 85.4 - -
MDTP [263] BBox - 92.6 88.4

Ours BBox 85.5 93.5 89.2
KP [44] 86.2 92.4 86.9

Boost-CNN [179] 86.2 92.1 88.5
B-CNN [155] 84.1 86.9 86.6

Imp. B-CNN [154] 85.8 92.0 88.5
α-pooling [236] 85.3 - 85.5

RA-CNN [72] 84.1 92.5 88.2
MA-CNN [314] 86.5 92.8 89.9

Ours 84.5 92.8 88.8

Table 2.3 – Comparison with the state of the art on
fine-grained datasets.

λ 0.0001 0.01 0.4 1
Accuracy 83.3 83.7 83.7 83.1

Table 2.4 – Influence of λ on the final classification accuracy.

2.4.6 Attentional Global Average Pooling

While our main goal was to introduce an attention mechanism in structured represen-

tations, our approach also applies to unstructured pooling strategies, such as global

average pooling (GAP). To illustrate this, we implemented an attentional GAP layer

using our attention map. As shown in Table 2.5, this also typically outperforms the

standard GAP strategy, thus further showing the benefits of attention when performing

feature aggregation. Note, however, that our attentional VLAD strategy still significantly

outperforms the GAP one.

Pooling Anno. Birds Cars Aircrafts
GAP BBox 79.8 89.3 86.6

Attentional-GAP BBox 76.3 91.1 88.3
NetVLAD BBox 82.4 89.8 88.0

Attentional-NetVLAD BBox 85.5 93.5 89.2
GAP 78.6 86.2 84.5

Attentional-GAP 77.8 89.6 85.5
NetVLAD 80.6 89.4 86.4

Attentional-NetVLAD 84.5 92.8 88.8

Table 2.5 – Attentional Global Average Pooling on fine-grained datasets.

20

2.5. Additional Qualitative Results

2.5 Additional Qualitative Results

Below in Figures 2.6, 2.7, 2.8, and 2.9, we show the attention maps obtained with our

approach for additional randomly-sampled images from the four datasets.

21

Chapter 2. Attention-Aware Structured Representation Learning

Figure 2.6 – Generated attention maps on the MIT-Indoor dataset.

22

2.5. Additional Qualitative Results

Figure 2.7 – Generated attention maps on the Aircrafts dataset.

23

Chapter 2. Attention-Aware Structured Representation Learning

Figure 2.8 – Generated attention maps on the Birds dataset.

24

2.5. Additional Qualitative Results

Figure 2.9 – Generated attention maps on the Stanford-Cars dataset.

25

Chapter 2. Attention-Aware Structured Representation Learning

2.6 Conclusion

We have introduced an attention-aware structured representation network for complex

visual recognition tasks. Our network jointly identifies the informative image regions and

learns a structured representation. Our comprehensive experiments on scene recognition

and fine-grained categorization have demonstrated the superiority of our approach over

attention-less strategies. Our approach is general and can be extended to other feature

aggregation techniques, or can make use of any generic attention module. In the following

two chapters, we show how these structured representations can be leveraged to detect

and defend the adversarial attacks.

26

3 Semantic Dictionaries for Adver-

sarial Example Detection

We now turn our focus on the task of adversarial example detection. To this end, we

build upon our earlier work on structured representation networks to achieve this goal.

In this chapter, we first introduce an approach to providing a visual interpretation of the

results of a deep convolutional neural network (CNN). To this end, we exploit the earlier

discussed Bag of visual Words (BoW) networks and introduce two strategies to assigning

a visual meaning to a network’s codebook elements. The network’s predictions can

then be interpreted by analyzing the visual representation of the most highly activated

codeword. Doing so is particularly attractive to analyze a network’s failures. We therefore

propose to leverage our interpretable BoW networks for adversarial example detection.

To this end, we build upon the intuition that, while adversarial samples look very similar

to real images, to produce incorrect predictions, they should activate codewords with a

significantly different visual representation. We therefore cast the adversarial example

detection problem as that of comparing the input image with the most highly activated

visual codeword.

Further, we show that our detection framework breaks against complete white-box

adversary by creating a new adaptive attack. However, as evidenced by our experiments,

our method outperforms the state-of-the-art adversarial example detection methods in

gray-box and black-box threat settings w.r.t detector.

3.1 Introduction

While the discriminative power of deep convolutional neural networks (CNNs) is nowadays

virtually uncontested, one of the key research challenges that remain unaddressed is

the understanding of the reason behind a network’s prediction. The main trends to

achieve such an understanding consist of post-training analysis to visualize either feature

maps at different layers [169, 170] or the image regions that contribute most to the

decision [74, 233]. In this chapter, we introduce an alternative strategy to providing a

27

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

visual interpretation of a network’s prediction based on the analysis of its last feature

map.

Figure 3.1 – Interpretable BoW networks. We assign a visual representation to the
codewords to interpret the decisions of a CNN. Doing so allows one to analyze the reasons
for assigning a given image to a particular class, which is particularly interesting when
the network makes mistakes. We therefore leverage our visual representations to detect
adversarial samples, whose visual interpretations will look very different from the input
images.

A naive approach to doing so would consist of retrieving the nearest training sample in

feature space and use the corresponding image as visual interpretation. This, however,

quickly becomes prohibitively expensive as it requires performing a complete nearest-

neighbor search at test time. To address this, we propose to make use of Bag of visual

Words (BoW) networks. Inspired by traditional representations [125] BoW networks,

such as HistNet [266], BoFNet [204], NetVLAD [5] and Deep FisherNet [247], incorporate

a layer that relates the final CNN features to the elements of a codebook, learnt jointly

with the network parameters, via a histogram-based representation. In essence, such a

histogram encodes the similarity in feature space of the input sample to the codewords.

We therefore propose to assign a visual interpretation to each codeword and, as depicted by

Fig. 3.1, analyze the predictions by observing the most highly-activated visual codewords.

When it comes to analyzing a network’s prediction, the most interesting use case probably

is when the network makes a mistake. For example, in the middle example of Fig. 3.1, a

truck image was classified as car because of its similarity to this class. In this chapter,

we particularly focus on mistakes due to adversarial attacks: By altering an input image

with a small amount of structured noise, invisible to the human eye, one can make a CNN

28

3.2. Related Work

predict virtually any output [246]. This erratic behavior can have a catastrophic impact

in many real-world applications, such as face recognition and autonomous navigation.

Here, we therefore propose to leverage our visual interpretation of a network’s prediction

to detect adversarial examples.

To this end, we rely on the intuition that an adversarial example (i) looks similar to

the unaltered, but unknown, image; and (ii) to produce an erroneous prediction, will

have a high activation for a codeword that corresponds to the wrong class. The visual

interpretation of this codeword, however, constitutes a prototype of this wrong class,

and thus, as shown in the bottom example of Fig. 3.1, will look very different from

the adversarial example itself. We therefore cast adversarial example detection as the

problem of comparing the adversarial image with the visual representation of the most

highly activated codeword.

To summarize, our contributions are (i) the use of BoW networks to provide a visual

interpretation of a network’s prediction; (ii) two strategies to assign a visual meaning to

the codewords of a BoW network: one based on nearest-neighbor search between the

codeword and the training samples and another based on a generative adversarial network

(GAN) [78], yielding an end-to-end trainable framework and allowing us to handle the case

where a codeword lies far from any training example; (iii) a novel approach to adversarial

and out-of-distribution example detection based on the comparison of the input image

with the most highly activated visual codeword. Our experiments demonstrate that our

interpretable BoW networks yield visually meaningful representations of a network’s

prediction and allow us to outperform the state-of-the-art adversarial example detection

methods on standard benchmarks for state-of-the-art attack strategies, such as CW [26],

FGSM [79], and BIM [137] in gray-box and black-box threat settings w.r.t. detector

model.

3.2 Related Work

In this chapter, we propose to make use of BoW networks to provide a visual interpretation

of a network’s prediction. We then show how to exploit these visual representations for

adversarial and out-of-distribution example detection. Below, we therefore review the

literature related to the different aspects of our work.

BoW representations. Bags of visual Words (BoW) [125, 216, 239] have a longstanding

history in computer vision. Originally developed in the context of handcrafted features,

the core idea consists of extracting histograms by comparing local features to the elements

of a codebook obtained from the training data. This idea was then extended to VLAD [110]

and Fisher Vectors [210, 229], which encode higher-order statistics of the data with respect

to the codewords. In the deep learning era, while most networks extract the final image

representation using standard convolutions, a few works have attempted to leverage

29

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

histogram-based representations. In particular, [77] exploits a VLAD pooling strategy

on features extracted with a pre-trained network. While this separates feature extraction

and classifier training, HistNet [266], BoFNet [204], NetVLAD [5], ActionVLAD [75],

and Deep FisherNet [247] constitute end-to-end learning frameworks leveraging BoW,

VLAD and Fisher Vector representations, respectively. In this chapter, our goal is not

to introduce a new histogram-based architecture. Instead, we propose to leverage BoW

networks to provide a visual interpretation of a network’s prediction.

Interpreting CNNs. Attempts at interpreting the representations learned by CNNs

or their predictions remain few, and existing methods follow two main trends. The

first one [169, 170, 195, 297] focuses on visualizing the CNN filters in a post-training

stage, by either inverting the network, or performing gradient ascent in image space to

maximize neuron’s activations. The second trend consists of identifying the image regions

that bear the most responsibility for the prediction. This idea can be traced back to

non-deep learning strategies, such as representations based on object detectors [146] and

classemes [251], and even part-based models [65, 66, 67]. In the deep learning context,

this was introduced by [316], extended in [233], both of which use a post-training strategy.

This was followed by [261] that incorporates an attention module at every layer of the

network, and [307] that uses an additional loss to assign each CNN filter to an object part.

Recently [74, 188] have proposed to leverage attention maps during pooling operations.

In this chapter, we introduce an alternative way to interpret the prediction of a CNN by

providing a visual representation to the codewords of a BoW model. While [188] also

relies on a histogram-based representation, their approach differs fundamentally from

ours in that it does not assign a visual interpretation to the codebook. Here, we explore

two strategies to provide a visual interpretation to BoW networks, including one that

allows for end-to-end training. Furthermore, we demonstrate that our visual codewords

can be exploited for adversarial and out-of-distribution example detection.

Adversarial attack detection. When the sensitivity of deep networks to adversarial

attacks was identified [246], initial works focused on developing defense strategies [79, 137],

aiming to robustify the networks. However, these defenses were typically found to be

vulnerable to optimization-based techniques [26]. Therefore, the research focus has

increasingly shifted towards detecting adversarial samples, thus allowing one to discard

them instead of attempting to be robust to them. In this context, [177] proposed to use a

separate subnetwork to detect adversarial examples; [81] relied on knowledge distillation

and Bayesian uncertainty to train a simple logistic regression detector; [167] exploited a

measure of local intrinsic dimensionality to identify the adversarial examples. Here, we

show that we can outperform all these methods by learning to compare the input image

with the visual representation of the most highly activated codeword in our interpretable

BoW network.

Another problem related to adversarial sample detection is that of identifying out-of-

distribution (OOD) examples. This task has been addressed by training a detector on

30

3.3. Method

the softmax scores of a network [93], extended in [151] by an additional pre-processing

of the network input. In [142], a unified framework for adversarial and OOD sample

detection was introduced. As evidenced by our experiments, our approach also applies to

both tasks and outperforms the state of the art in each. It further gives the possibility

to visually analyze the attacks, opening the door to human intervention in the detection

process.

Figure 3.2 – Interpretable BoW network. A BoW network, shown in the top
portion, relies on a dictionary to form a histogram-like image representation. Our second
approach to providing it with interpretability relies on a pre-trained GAN to generate
visual codewords, which are passed through same backbone as that in the BoW network
to obtain the codewords. The decision of model can then be interpreted by analyzing
the visual codeword with highest activation.

3.3 Method

In this section, we first introduce our approach to leveraging BoW networks to obtain a

visual interpretation of a network’s prediction. We then show how to exploit the resulting

visual codebook to detect adversarial and out-of-distribution (OOD) examples.

3.3.1 Interpretable BoW Networks

Our goal is to obtain a visual interpretation of a network’s prediction. To this end, we

propose to analyze the last feature representation of the network. Instead of relying on an

expensive nearest-neighbor search between the test image features and the training ones,

we advocate for the use of histogram-based networks, such as those of [5, 204, 247, 266].

Below, we first formalize the BoW network we use, and then introduce two strategies to

providing it with interpretability.

BoW network. Formally, let I be an image input to a CNN, and X ∈ RW×H×D be

the feature map output by the CNN’s last convolutional layer, with spatial resolution

W ×H and D channels. A typical BoW network treats each D-dimensional vector xi in

31

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

X as a local feature and relates it to a codebook. Here, however, we are interested in

having a single global visual interpretation of the prediction, which will be better suited

for adversarial example detection. We therefore rely on global average pooling to obtain

a single D-dimensional feature vector x from X.

We then pass this vector to a BoW layer that, given a codebook B with K codewords,

produces a K-dimensional representation of the form

h(x) = [a0(x), a1(x), · · · , aK(x)]T , (3.1)

where ak(x) is given by

ak(x) =
e−α‖x−bk‖2∑
k′ e
−α‖x−bk′‖

2 . (3.2)

This value represents the assignment of x to codeword bk. Note that, in the classical

BoW formalism, the assignments are binary, i.e., ak = 1 for a single k and 0 for the other

indices. However, within our deep learning context, for differentiability, we relax them as

soft assignments, with α a hyper-parameter defining the softness. The resulting BoW

vector h(x) then acts as input to the final classification layer of the network.

In essence, the soft assignments ak encode the similarity in feature space of the input

image with the codewords. Since these assignments act as input to the classifier, they

are key to determining the class of the input image. One can therefore analyze the

network’s prediction by studying the codeword with highest activation. To make this

analysis interpretable, below, we introduce two strategies to providing the codewords

with a visual representation.

Providing interpretability. Our first approach to obtaining a visual codeword repre-

sentation is simple: Because a codeword bk lies in the same space as the network’s final

features, we propose to retrieve the training image Ij whose final feature vector xj is

closest to the codeword. This is achieved by a nearest-neighbor search in a post-training

stage, and, for each codeword bk yields a visual representation Vk directly coming from

the training set. Note that, in contrast to comparing the final feature vector x of the

test sample with all training features, this search needs to be performed only once after

training the BoW model, not once for every test image.

This nearest-neighbor strategy nonetheless suffers from the fact that, for some codewords,

the closest training image might still be relatively far, and thus not be a good repre-

sentative of the codeword. To circumvent this, and further incorporate the codewords’

visual interpretation in the training stage, as a second strategy, we propose to exploit a

generative adversarial network (GAN). This process is illustrated in Fig. 3.2. Specifically,

the images obtained from the generator of a pre-trained GAN are passed through the

same backbone network as that of our BoW model, and the resulting average-pooled

features taken as codewords. As a result, the set of K generated images {Vk}Kk=1 form a

32

3.3. Method

visual dictionary, and each codeword bk in the codebook B is directly associated to a

visual interpretation Vk.

Whether using the first or the second strategy, at test time, we can obtain an interpretation

of the network’s prediction by observing the visual codeword Vk∗ associated with the

most highly activated codeword, that is,

k∗ = argmax
k

ak(x) , (3.3)

with x the last feature vector of the test sample. For a sample from class c, this visual

codeword will typically correspond to an image of the same class. It will, moreover, depict

characteristics similar to that of the input image, and, as shown in our experiments,

different codewords from the same class c will focus on different characteristics.

Training. To train our BoW model, we follow the same strategy as in the BoW network

literature [5, 75]. That is, we first train the backbone network, without BoW layer but

with a softmax classifier. We then performs K-means clustering on the last features

{xj}Nj=1 of the N training samples to obtain the codebook. Specifically, we define an

equal number of codewords S for each class. Thus, for a C-class dataset, we obtain

K = CS codewords, and force each group of S codewords to come from the same class

during the clustering procedure. Finally, we incorporate the BoW layer to the network

and train the resulting BoW model by replacing the backbone network classification

layer with a layer that maps the BoW representation to the class labels and using the

standard cross-entropy loss.

For our nearest-neighbor interpretability strategy, we can directly use the resulting BoW

model. However, for the GAN-based one, which defines an end-to-end model, we aim to

further incorporate the codewords’ visual interpretation in the training process. To this

end, we treat the K-means codebook described above as an initial one, denoted as B0. To

obtain a visual representation of this codebook, we then make use of a GAN pre-trained

on the dataset of interest. Specifically, for of each codeword in B0, we optimize the input

z of the generator, whose weights are fixed, so as to generate an image that, when passed

through the backbone network, yields features that are close to the codeword in the

least-square sense. That is, formally, for each codeword b0,k in B0, we solve

z∗k = argmin
z
‖f(g(z))− b0,k‖2 , (3.4)

where g(·) represents the generator, and f(·) the backbone network up to the last average

pooling operation. We then take our codebook B to be the set of generated features

{f(g(z∗k))}, and train the resulting BoW model.

Note that, while this training procedure may seem costly, this has no effect on the

computational cost at test time. Indeed, inference only involves a forward pass through

33

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

our BoW network, which, compared to the backbone network, only requires us to store

the additional codebook B; that is, the generator network is not needed anymore.

3.3.2 Detecting Adversarial Examples

By providing a visual interpretation of a network’s prediction, our interpretable BoW

network can be leveraged to detect adversarial examples. The reasoning behind this is the

following: Typically, adversarial attacks aim to add the smallest amount of perturbation

to an image so that the network misclassifies it. While this perturbation should be

imperceptible to humans, it should strongly affect the resulting deep representation. In

our case, this representation is the BoW one, and, for misclassification to occur, the most

highly activated codeword should typically be associated to the wrong class. As such, its

visual representation should look significantly different from the adversarial example. We

therefore propose to train an adversary detector that, given two input images, predicts

whether they belong to the same class or not.

Formally, our detection framework, proceeds as follows. An image I, adversarial or not,

is passed through our interpretable BoW network, and we retrieve the visual codeword

Vk∗ corresponding to the highest activation using Eq. 3.3. We then pass I and Vk∗ to

our adversary detector, which outputs a binary label indicating whether the two images

belong to the same class or not. If they don’t, then I is deemed an adversarial example.

Our detector is a two-stream network that extracts features for the two images indepen-

dently. To train this network, we make use of the contrastive loss [86], which aims to make

the Euclidean distance between pairs of mismatched images larger than a margin m = 1,

while minimizing that of matching pairs. Detection is then performed by comparing the

Euclidean distance to the margin.

While we train the detector to identify adversarial samples, it can also be used to detect

OOD ones, even without any re-training. The intuition remains unchanged: An OOD

sample will activate a codeword whose visual representation looks different from the

input image. The detection procedure is thus the same as for adversarial samples.

3.4 Experiments

We now empirically evaluate our interpretable BoW networks by we first analyzing the

learned visual dictionaries and then demonstrating their benefits to detect adversarial

and OOD samples. To this end, we used the standard datasets employed for adversarial

sample detection, that is, MNIST [141], F-MNIST [279], CIFAR-10 [135], SVHN [194].

Implementation details. For our comparisons to be meaningful, we rely on the same

backbone architecture as in [167] on each dataset. This architecture is first trained with

34

3.4. Experiments

a softmax classifier for 50-100 epochs and used to compute the initial codebook B0. In

parallel, we train a GAN [78]1 for 100k iterations. Following the procedure described in

Section 3.3.1, we obtain our interpretable codebook B either by nearest neighbor search

(BoW-NN) or using the pre-trained GAN generator (BoW-GAN). We then train the

classification layer of our interpretable BoW model for 40 epochs.

In all our experiments, we set α = 100 in the BoW soft-assignment policy of Eq. 3.2,

and use the Adam [124] optimizer with a learning rate of 0.001 and a decay rate of 0.1

applied every 20 epochs. Note that our goal here is not to advocate for the superior

performance of the BoW model, but rather for its use to provide a visual interpretation,

as discussed below.

3.4.1 Visualizing BoW Codewords

Each codeword in our BoW model is directly associated with an image Vk. In Fig. 3.3,

we visualize some of these images for our two interpretability strategies, NN and GAN.

This confirms that the learned codewords nicely cover the diversity of the classes in each

dataset. For example, in F-MNIST, each garment appears in a variety of sizes and styles.

Similarly, in CIFAR-10, each object appears in different colors, orientations and in front

of different backgrounds. Furthermore, each one of these images retains the semantic

meaning of the class label for which it was generated. This will prove key to the success

of our adversarial sample detector, as discussed in the next section.

In the top row of Fig. 3.4, we show the codewords with highest activation for a few

correctly-classified images of each dataset. Note that, in most cases, the corresponding

codeword has the same semantic meaning as the input image, not only because it

corresponds to the same class, but also because it depicts a visually similar content, e.g.,

in terms of color and orientation. Furthermore, in the second row of Fig. 3.4, we show

activated codewords for misclassified samples. Note that these samples activate visually

dissimilar codewords, and thus mistakes can be analyzed. For example, on MNIST, the

digit 7 (second image in the misclassified portion) is misclassified as 4 due to its similarity

with a codeword of class 4.

3.4.2 Detecting Adversarial Samples

In all experiments, we assume that attacker has full knowledge about classifier

model weights. In other words, all our experiments are conducted in white-box threat

setting w.r.t. classifier. With that assumption, we classify the attacks w.r.t. to detector

in three settings:

1For CIFAR-10, we used a WGAN [82] because a standard GAN led to poor visual quality.

35

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

Figure 3.3 – Visual interpretations of the BoW codebooks obtained using NN
search or a GAN.

• Black-box detector setting. Adversary neither has access to detector weights

nor knowledge about detection mechanism.

• Gray-box detector setting. Adversary does not have access to detector weights

but is aware of the detection mechanism

• White-box detector setting. Adversary has access to both detector weights

and its detection mechanism

We make use of the state-of-the-art attack methods, FGSM [79], BIM-a [137], BIM-

b [137], and CW [26], to evaluate the effectiveness of our adversarial example detection

36

3.4. Experiments

Figure 3.4 – Visualization of the most highly activated codeword for normal
and adversarial samples. We show both correctly classified and misclassified normal
samples. The top row within a block shows the input samples and the next two rows
the corresponding NN and GAN codewords, respectively. The adversarial examples were
obtained with a BIM-a attack.

strategy. To this end, following common practice [167], we discard the images that

were misclassified by the original networks from this evaluation. We focus on white-box

attacks, where the attacker has access to the exact model it aims to fool. There are two

ways to attack our BoW model: One can generate adversarial examples either for the

BoW model itself, or for the backbone network. We refer to the latter as transferred

BoW (T-BoW) attacks. Note that, the attacks directly targeting our BoW model are

significantly less successful than those on the backbone network (T-BoW attacks).

Before we turn to attack detection, we first validate our intuition that adversarial samples

will activate codewords corresponding to the wrong classes, and that these codewords

will be visually dissimilar to the input image. To this end, in the bottom row of Fig. 3.4,

we show the most highly activated codeword images for a few successful adversarial

attacks. Note that these images differ semantically and visually from the input, which

will facilitate attack detection.

Black-box detector setting

We now evaluate the effectiveness of the detection strategy introduced in Section 3.3.2 in

black-box detector setting. To this end, we train our detector using adversarial examples

generated by the white-box attacks on the classifier as discussed above. Specifically,

37

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

we report results obtained with two training strategies. Strategy 1, which is commonly

used [167], consists of defining a balanced training set comprised of normal images

(positives) and their adversarial counterparts (negatives). A drawback of this strategy,

however, is that many attacks are unsuccessful with our BoW model, and considering

such samples as negatives essentially adds noise to our training process, since unsuccessful

adversarial samples will typically activate a codeword that is similar to the input image.

To overcome this, we therefore propose Strategy 2, which consists of using only the

successful adversarial examples as negatives during training. The resulting training set,

however, is then imbalanced.

Comparison with the state of the art. We compare our approach with the state-

of-the-art BU [81], LID [167] and MD [142] methods, which have proven more robust

than the earlier detection strategy [64]. In Tables 3.1 and 3.2, we report the area under

the ROC curve (AUROC) for BU, LID, MD and our method, using both Strategy 1 and

Strategy 2, for white-box direct BoW and T-BoW attacks, respectively. Note that we

outperform the state of the art in most cases, by a particularly large margin when the

results are not already saturated, such as with BIM-a on SVHN and CIFAR-10 and with

FGSM on CIFAR-10. Note that our NN and GAN strategies yield similar results on the

simpler MNIST, F-MNIST and SVHN datasets, but the GAN one performs better on

CIFAR-10. This, we believe, is due to the largest diversity of this dataset, making the

nearest training image a relatively poor representative of the codeword. By contrast, the

GAN can generate an image whose last features are very close to the codeword.

Similarly to [167], we evaluate how a detector trained for a specific attack generalizes to

other ones. In Table 3.3, we compare the generalizability of our approach, LID and MD.

For each method, we show the results of the model that was trained on the attack that

makes it generalize best to the other ones. Note that the performance of our detector is

virtually unaffected. While LID and MD also generalize well in some cases, our method

outperforms them by a large margin in several scenarios, such as CW attacks.

Gray-box detector setting

In the previous set of experiments, we have worked under the assumption that the

attacker only had access to our BoW model, but not to the detector. Here, we remove

this assumption, and study in more challenging scenarios. In this section, we assume

that the attacker knows our detection strategy, but not the detector model we use.

To evaluate the robustness of our approach in the gray-box scenario where the attacker

is aware of our detection scheme, we apply an adaptive CW attack strategy similar to

the ones used in [25, 167] to attack the KD and LID detectors, respectively. To this end,

38

3.4. Experiments

Dataset Feature FGSM BIM-a BIM-b CW

MNIST

KD+BU 95.22 / 94.11 82.54 / 72.80 82.17 / 72.43 50.17 / 60.01
LID 92.66 / 91.18 82.24 / 61.90 83.06 / 75.61 51.81 / 68.46
MD 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 50.94 / 67.18
Ours-NN 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 50.85 / 99.02
Ours-GAN 100.00 / 100.0 100.0 / 100.0 100.0 / 100.0 50.87 / 100.0

F-MNIST

KD+BU 99.33 / 99.36 91.35 / 87.32 89.43 / 85.39 69.68 / 65.83
LID 93.88 / 93.93 86.95 / 81.06 86.83 / 81.11 73.23 / 70.84
MD 98.02 / 98.45 88.96 / 85.49 91.43 / 89.38 72.71 / 72.68
Ours-NN 100.0 / 100.0 99.98 / 99.95 100.0 / 99.97 84.50 / 97.59
Ours-GAN 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 83.97 / 97.96

SVHN

KD+BU 78.21 / 74.24 78.37 / 73.97 67.96 / 71.46 88.68 / 88.62
LID 99.88 / 99.25 83.45 / 84.17 85.76 / 90.42 91.23 / 91.40
MD 99.65 / 99.73 82.26 / 82.93 87.81 / 93.43 88.92 / 89.55
Ours-NN 100.0 / 100.0 98.66 / 96.98 100.0 / 100.0 96.05 / 96.75
Ours-GAN 99.9 / 100.0 98.71 / 96.16 99.9 / 100.0 96.52 / 96.49

CIFAR-10

KD+BU 72.79 / 69.66 86.23 / 85.69 60.23 / 62.52 93.74 / 93.74
LID 89.67 / 89.26 85.40 / 85.02 80.55 / 82.79 93.57 / 93.17
MD 97.94 / 97.93 84.68 / 84.17 84.47 / 84.45 91.64 / 91.59
Ours-NN 97.14 / 98.77 93.12 / 95.65 95.12 / 98.88 94.12 / 94.61
Ours-GAN 99.37 / 99.97 93.90 / 97.47 99.90 / 99.96 96.52 / 96.35

Table 3.1 – Attacks on BoW model in black-box setting. Left and right numbers
correspond to AUROC scores for Strategy 1 and Strategy 2, respectively.

Dataset Feature FGSM BIM-a BIM-b CW

MNIST

KD+BU 93.73 / 93.63 86.09 / 83.09 79.22 / 79.22 80.64 / 80.64
LID 99.17 / 99.15 99.75 / 99.75 95.16 / 96.16 99.01 / 99.03
MD 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 99.96 / 99.96
Ours-NN 100.0 / 100.0 100.0 / 100.0 100.0 / 100.0 99.94 / 99.97
Ours-GAN 100.00 / 100.0 100.0 / 100.0 100.0 / 100.0 99.85 / 100.0

F-MNIST

KD+BU 96.99 / 97.03 92.60 / 92.60 97.74 / 97.74 93.27 / 93.27
LID 95.68 / 95.68 95.95 / 95.95 95.24 / 95.24 97.31 / 97.31
MD 98.23 / 98.23 88.96 / 94.04 91.43 / 99.19 72.71 / 95.89
Ours-NN 100.0 / 100.0 99.98 / 99.95 99.90 / 99.87 98.35 / 98.20
Ours-GAN 100.0 / 100.0 99.98 / 100.0 100.0 / 100.0 98.26 / 97.96

SVHN

KD+BU 85.04 / 85.08 88.06 / 88.06 99.99 / 99.99 92.85 / 92.85
LID 99.88 / 99.32 88.45 / 84.17 98.76 / 99.93 94.23 / 94.23
MD 99.79 / 99.82 80.95 / 81.31 99.94 / 99.94 92.48 / 92.62
Ours-NN 100.0 / 100.0 96.85 / 96.47 99.97 / 100.0 95.43 / 96.52
Ours-GAN 99.99 / 100.0 96.66 / 96.25 100.0 / 100.0 95.61 / 96.86

CIFAR-10

KD+BU 75.75 / 74.67 80.02 / 79.69 99.12 / 99.24 96.06 / 96.05
LID 87.16 / 87.92 82.17 / 81.77 99.91 / 99.91 97.54 / 97.56
MD 97.62 / 97.59 73.85 / 76.36 99.99 / 99.99 96.68 / 96.36
Ours-NN 98.56 / 99.01 95.42 / 95.78 99.12 / 99.34 95.47 / 96.54
Ours-GAN 99.80 / 99.71 96.77 / 96.87 99.77 / 99.85 96.70 / 97.24

Table 3.2 – Attack on T-BoW model in black-box setting. Left and right numbers
correspond to AUROC scores for Strategy 1 and Strategy 2, respectively.

we modify the objective of the CW attack as

arg min
Iadv
‖I− Iadv‖22 + α ·

(
`(Iadv) + ‖φ(I)− φ(Iadv)‖22). (3.5)

The first two terms correspond to the original CW attack, with α balancing the amount of

perturbation and the adversarial strength, that is, how strongly one forces the adversarial

image to be misclassified. The last term directly reflects our detection strategy and

encourages the BoW representation of the real, φ(I), and adversarial, φ(Iadv), images to

39

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

Dataset Method Train FGSM BIM-a BIM-b CW

MNIST
LID FGSM 91.18 65.48 64.42 29.05
MD FGSM 100.0 99.87 99.98 34.72

Ours-GAN BIM-a 100.0 100.0 100.0 97.56

F-MNIST
LID FGSM 93.88 82.24 82.58 65.03
MD FGSM 98.45 87.81 90.48 64.04

Ours-GAN CW 97.39 97.13 95.85 97.96

SVHN-10
LID FGSM 99.25 77.54 79.77 75.16
MD FGSM 99.73 69.49 78.76 79.10

Ours-GAN BIM-a 91.41 96.25 91.30 94.73

CIFAR-10
LID FGSM 89.26 66.55 68.33 66.05
MD FGSM 97.93 65.32 80.34 60.60

Ours-GAN BIM-a 86.90 97.47 95.02 95.44

Table 3.3 – Generalizing to different attacks in black-box detector setting. We
compare the AUROC scores of LID, MD and our detector in the scenario where the
detectors were trained for a specific attack, but tested on different ones. These results
were obtained with Strategy 2 and direct BoW attacks.

be similar. The rationale behind this is that the attack then aims to find an adversarial

perturbation such that the sample is not only misclassified, but also has a representation

close to that of the real image, thus breaking the premise on which our detector is built.

Dataset Attack success rate Detector AUROC
F-MNIST 33.11 96.22
SVHN 94.58 96.54

CIFAR-10 99.95 97.47

Table 3.4 – Gray-box setting. We report AUROC scores of our detector in gray-box
setting. Our detector remains robust to an attacker that knows our detection strategy.

In Table 3.4, we report both the success rate of this adaptive attack on our BoW model

and the AUROC of our detector, trained with Strategy 2. Note that our detector still

yields high AUROC, thus showing that it remains robust to an attacker that knows our

detection strategy.

White-box detector setting

We now evaluate the robustness of our method in the case where the attacker has access

to all our models, that is, the BoW model, the GAN and the adversarial sample detector.

Note that access to the parameters of the generator and detector networks is not a mild

assumption since information about the training data is required to compute them.

To attack our complete framework, we generate adversarial images Iadv in a two-step

fashion. First, we attack the BoW classifier to generate an intermediate adversarial

image I0adv that activates codeword j corresponding to image Vj in the visual codebook.

Second, we attack the detector to misclassify Vj as being similar to the input image.

40

3.4. Experiments

Since our detector relies on the distance between the input image and the codeword

in feature space, fooling it can be achieved by finding a perturbation that solves the

optimization problem

min
Iadv

∥∥I0adv − Iadv
∥∥2
2

+ α · ‖γ(Vj)− γ(Iadv)‖22 , (3.6)

where γ(·) is the feature-extraction part of our detector.

Dataset
Classifier Detector Attack success rate

attack attack on detector (%)

MNIST
FGSM FGSM 0.00

CW CW 100.00

F-MNIST
FGSM FGSM 2.8

CW CW 100

Table 3.5 – White-box detector attacks. An attacker that has access to our BoW
network, GAN and detector can indeed be successful when using the CW attack, but not
the FGSM one.

We found that, as is, our detector is indeed vulnerable to such an attack. As observed

from Table 3.5, the adversary through modified CW strategy can find pertubations such

that it fools both the classifier and the detector with 100% attack success rate. While it

is desirable to have a detector work in the strongest white-box setting; from a practical

perspective, however, attacker having access to detector weights in quite rare, and our

work shows that our detector remains fairly effective than competitors in black-box and

gray-box settings.

In retrospect, at the time of writing this thesis, we found two papers [36, 57] after the

publication of our work, on the similar spirit as our method. Both the works [36, 57] uses

a visual representation of k-nearest neighbors to defend against the adversarial attack.

In particular, [57] uses the web-scale image database containing a billion images and

finds the k-nearest images to the given test image by calculating the L2 distance on

pre-computed features. In contrast, we set k = 1 since we choose the highest activated

codeword for similarity matching. Further, we restrict the dataset used for the nearest

neighbor to the training set, typically around 50K samples. Nevertheless, it was shown

in [36] that the proposed defense breaks when the attacker has access to the web-scale

database and to the exact value of k, an observation that we also encountered with k = 1

and using a small training set for codeword visual representation. Furthermore, [36]

uses a retrieval engine during training time to augment the original training set with the

k-nearest images in the feature space. Similar to the observation in [57], [36] reported

that its approach is compromised against white-box adversaries, but effective against

black-box attacks.

41

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

3.4.3 Detecting Out-of-distribution Samples

We now evaluate the use of our approach to detect OOD samples. Following the setup

of [93], we perform experiments using either SVHN [194] or MNIST [135] as training

datasets from which the in-distribution samples are drawn. The goal then is to detect

OOD samples coming from other datasets, such as LSUN [280], TinyImageNet [46],

Omniglot [139] and Not-MNIST [22]. We consider two settings: In the first, the detection

method does not see any OOD samples during training, but has access to adversarial

examples generated by the BIM-a attack; in the second, the detector has access to 1000

images from the OOD dataset.

In Table 3.6, we compare the results of our approach with those of the baseline method [93],

ODIN [151] and MD [142]. Note that we clearly outperform them, both when we see

OOD samples during training and in the more realistic case where we don’t. We believe

that this demonstrates the generality of our approach.

In
Dataset

Out
Dataset

Adversarial examples OOD samples

Baseline [93] / ODIN [151] / MD [142] / Ours-GAN

SVHN
CIFAR-10 87.44 / 87.54 / 95.34 / 97.26 87.92 / 87.46 / 95.99 / 99.14
LSUN 89.06 / 89.06 / 99.34 / 99.87 89.06 / 89.52 / 99.16 / 99.98
TinyImageNet 89.97 / 90.42 / 98.79 / 99.76 89.97 / 88.96 / 99.01 / 99.93

MNIST-10
Not-MNIST 77.11 / 77.69 / 85.82 / 97.44 77.23 / 77.69 / 99.56 / 99.98
OMNIGLOT 82.11 / 82.06 / 99.36 / 97.01 82.24 / 82.06 / 99.70 / 100.0
CIFAR 79.84 / 79.77 / 99.66 / 99.21 79.84 / 79.77 / 100.0 / 100.0

Table 3.6 – Detecting OOD samples. We compare the AUROC scores of our detector
with the baseline method of [93] and with ODIN [151] and MD [142] in the case where
we only observe adversarial samples during training (left) and when we have access to a
few OOD samples (right).

Below, we provide additional details regarding our architectures and our experimental

results.

3.4.4 Architectures

As base networks for our models, we used the same architectures as in [167]. These

architectures are provided in Table 3.7 for all datasets. The test errors on MNIST,

FMNIST, CIFAR-10, and SVHN using the softmax classifier and the BoW ones are given

in Table 3.8. For the detector in our adversarial example detection approach, we used

the architecture shown in Table 3.9 for all datasets, except for CIFAR-10. In this case,

we used a ResNet-20 [89]2 due to the higher image variance and background complexity

of this dataset.

We also trained a GAN [78] for MNIST and FMNIST, and a WGAN [82] for SVHN and

2https://github.com/tensorflow/models/tree/master/official/resnet

42

3.4. Experiments

Layer Parameters
Convolution + ReLU 5× 5× 64
Convolution + ReLU 5× 5× 64

MaxPool 2× 2
Dense + ReLU 128

Softmax 10

(a) MNIST and FMNIST

Layer Parameters
Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64

MaxPool 2× 2
Convolution + ReLU 3× 3× 128
Convolution + ReLU 3× 3× 128

MaxPool 2× 2
Dense + ReLU 512
Dense + ReLU 128

Softmax 10

(b) SVHN

Layer Parameters
Convolution + ReLU 3× 3× 32
Convolution + ReLU 3× 3× 32

MaxPool 2× 2
Convolution + ReLU 3× 3× 64
Convolution + ReLU 3× 3× 64

MaxPool 2× 2
Convolution + ReLU 3× 3× 128
Convolution + ReLU 3× 3× 128

MaxPool 2× 2
Dense + ReLU 1024
Dense + ReLU 512

Softmax 10

(c) CIFAR-10

Table 3.7 – Classifier architectures for different datasets.

CIFAR-10. The architectures of the generator for MNIST and FMNIST are provided in

Table 3.10a, and in Table 3.11a for SVHN and CIFAR-10. Similarly, the discriminator for

MNIST and FMNIST is provided in Table 3.10b, and the one for SVHN and CIFAR-10

in Table 3.11b.

Dataset Base BoW-NN BoW-GAN

MNIST 99.23 98.66 99.15
FMNIST 92.46 92.43 92.50

SVHN 92.43 92.08 91.81
CIFAR-10 87.54 87.78 87.95

Table 3.8 – Classification accuracy (in %) of the backbones and BoW networks.
Note that BoW models perform on par with backbone networks, but the BoW ones allow
us to obtain a visual interpretation.

Layer Parameters

Convolution + ReLU 5× 5× 32
MaxPool 2× 2

Convolution + ReLU 5× 5× 64
MaxPool 2× 2

Fully Connected + ReLU 128
Fully Connected + ReLU 128

Table 3.9 – Detector for MNIST, FMNIST and SVHN.

3.4.5 Additional Visualizations

We also provide additional visualizations of activated visual codewords for adversarial

samples of MNIST and FMNIST, SVHN and CIFAR-10 in Figs. 3.5 and 3.6.

43

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

Layer Parameters

Input noise, z ∈ R128 Nil
Dense + ReLU 128× 4× 4

Deconvolution + ReLU 5× 5× 128
Deconvolution + ReLU 5× 5× 64

Deconvolution + Sigmoid 5× 5× 1

(a) Generator for MNIST and FMNIST

Layer Parameters

Input image, I ∈ R28×28 Nil
Convolution + LeakyReLU, stride=2 5× 5× 64
Convolution + LeakyReLU, stride=2 5× 5× 128
Convolution + LeakyReLU, stride=2 5× 5× 256

Fully Connected + ReLU 1

(b) Discriminator for MNIST and FM-
NIST

Table 3.10 – Generator and Discriminator for MNIST and FMNIST

Layer Parameters

Input noise, z ∈ R128 Nil
Dense 128× 4× 4

ResBlock + Up 128
ResBlock + Up 128
ResBlock + Up 128

Convolution + Tanh 3× 3× 3

(a) Generator

Layer Parameters

Input image, I ∈ R32×32×3 Nil
ResBlock + Down 128
ResBlock + Down 128

ResBlock +Down + GAP 128
Dense 1

(b) Discriminator

Table 3.11 – Generator and Discriminator for SVHN and CIFAR-10, similar to the ones
used in [82]

44

3.4. Experiments

(a) FGSM (b) BIM-a

(c) BIM-b (d) CW

Figure 3.5 – Most highly activated codewords of adversarial samples obtained
with different attack strategies on MNIST test data. Each three rows within a
block show the input image (top) and corresponding codewords from nearest-neighbor
and GAN strategies in second and third rows, respectively. Note that the adversarial
images and their codeword are dissimilar in most cases. Note that, in the CW case, we
have fewer samples in some of the classes because of the low success rate of this attack.

45

Chapter 3. Semantic Dictionaries for Adversarial Example Detection

(a) FGSM (b) BIM-a

(c) BIM-b (d) CW

Figure 3.6 – Most highly activated codewords of adversarial samples obtained
with different attack strategies on FMNIST test data. Each three rows within
a block show the input image (top) and corresponding codewords from nearest-neighbor
and GAN strategies in second and third rows, respectively. Note that the adversarial
images and their codeword are dissimilar in most cases.

46

3.5. Conclusion

3.5 Conclusion

We have introduced a novel approach to interpreting a CNN’s prediction, by providing the

elements in a BoW codebook with a visual meaning. We have then proposed to leverage

the visual representation of these interpretable BoW networks for adversarial example

detection. Our experiments have evidenced that (i) our adversary detection strategy

outperforms the state-of-the-art ones in gray-box and black-box detector settings; (ii)

our framework generalizes to OOD sample detection.

We further showed that the adversary can break our detection framework in a complete

white-box detector setting by creating a new adaptive attack. However, our results in

gray-box and black-box detector settings are more effective than competitive works, at

least for those attacks considered in the experiments. Thus, our approach can be utilized

for DNNs deployed in a cloud-based environment in a practical scenario. In the next

chapter, we extend the interpretable BoW representations to part-based ones to first

understand the reasons for the success of adversarial attacks and then propose a defense

to mitigate the impact of the attack.

47

4 Towards Robust Fine-grained

Recognition by Maximal Separa-

tion of Discriminative Features

In the previous chapter, we studied the adversarial attacks on general image classification

problem. In contrast, the adversarial attacks remain largely unexplored in the context of

fine-grained recognition, where the inter-class similarities facilitate the attacker’s task.

In this chapter, we identify the proximity of the latent representations of local regions

of different classes in fine-grained recognition networks as a key factor to the success of

adversarial attacks. We therefore introduce an attention-based regularization mechanism

that maximally separates the latent features of discriminative regions of different classes

while minimizing the contribution of the non-discriminative regions to the final class

prediction. As evidenced by our experiments, this allows us to significantly improve

robustness to adversarial attacks, but without requiring access to adversarial samples.

Further, our formulation also improves detection AUROC of adversarial samples over

baselines on adversarially trained models.

4.1 Introduction

Deep networks yield impressive results in many computer vision tasks [119, 136, 163, 298].

Nevertheless, their performance degrades under adversarial attacks, where natural ex-

amples are perturbed with human-imperceptible, carefully crafted noise [79]. Adver-

sarial attacks have been extensively studied for the task of general object recogni-

tion [26, 52, 79, 137, 182, 201], with much effort dedicated to studying and improving

the robustness of deep networks to such attacks [117, 168, 285]. However, adversarial

attacks and defense mechanisms for fine-grained recognition problems, where one can

expect the inter-class similarities to facilitate the attacker’s task, remain unexplored.

In this chapter, we therefore analyze the reasons for the success of adversarial attacks

on fine-grained recognition techniques and introduce a defense mechanism to improve a

network’s robustness. To this end, we visualize the image regions mostly responsible for

49

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.1 – Interpreting adversarial attacks for fine-grained recognition. We
analyze the attention maps, obtained with [74](a) and [29](b), of four images from
the Black-footed albatross class. Under PGD attack, these images are misclassified as
closely-related bird species, such as Layman albatross, because the classifiers focus on
either confusing regions that look similar in these classes, such as the bird’s beak, or
non-discriminative background regions, such as water.

the classification results. Specifically, we consider both the attention-based framework

of [74], closely related to class activation maps (CAMs) [316], and the recent prototypical

part network (ProtoPNet) of [29], designed for fine-grained recognition, which relates

local image regions to interpretable prototypes. As shown in Fig. 4.1, an adversarial

example activates either confusing regions that look similar in samples from the true

class and from the class activated by the adversarial attack, such as the beak of the bird,

or, in the ProtoPNet case, non-discriminative background regions, such as water. This

suggests that the latent representations of these confusing regions are close, and that

the ProtoPNet classifier exploits class-irrelevant background information. These two

phenomena decrease the margin between different classes, thus making the network more

vulnerable to attacks.

Motivated this observation, we introduce a defense mechanism based on the intuition

that the discriminative regions of each class should be maximally separated from that of

the other classes. To this end, we design an attention-aware model that pushes away

the discriminative prototypes of the different classes. The effectiveness of our approach

is illustrated in Fig. 4.2, where the prototypes of different classes are nicely separated,

50

4.1. Introduction

Figure 4.2 – t-SNE visualization of the prototypes from 12 fine-grained classes
of the CUB200 dataset. In ProtoPNet [29], the prototypes of different classes are not
well separated, making the network vulnerable to attacks. By contrast, our approach
yields well-separated discriminative prototypes, while clustering the background ones,
which, by means of an attention mechanism do not participate the prediction. This
complicates the attacker’s task.

except for those corresponding to non-discriminative regions. However, by means of

an attention mechanism, we enforce these non-discriminative prototypes to play no

role in the final class prediction. Ultimately, our approach reduces the influence of the

non-discriminative regions on the classification while increasing the magnitude of the

displacement in the latent space that the attacker must perform to successfully move the

network’s prediction away from the true label.

As evidenced by our experiments, our approach significantly outperforms in robustness the

baseline ProtoPNet and attentional pooling network, in some cases reaching adversarial

accuracies on par with or higher than their adversarially-trained [254, 257] counterparts,

but at virtually no additional computational cost.

Our main contributions can be summarized as follows. We analyze and explain the

decisions of fine-grained recognition networks by studying the image regions responsible

for classification for both clean and adversarial examples. We design an interpretable,

attention-aware network for robust fine-grained recognition by constraining the latent

space of discriminative regions. Our method improves robustness to a level comparable

to that of adversarial training, without requiring access to adversarial samples and

without trading off clean accuracy. Further, our approach improves the AUROC score of

adversarial example detection by 20% over baselines for adversarial trained networks.

51

Chapter 4. Towards Robust Fine-grained Recognition

4.2 Related Work

Adversarial Robustness. DNNs were first shown to be vulnerable to adversarial,

human-imperceptible perturbations in the context of general image recognition. Such

attacks were initially studied in [246], quickly followed by the simple single-step Fast

Gradient Sign Method (FGSM) [79] and its multiple-step BIM variant [137]. In [52],

the attacks were stabilized by incorporating momentum in the gradient computation.

Other popular attacks include DeepFool [182], which iteratively linearizes the classifier to

compute minimal perturbations sufficient for the sample to cross the decision boundary,

and other computationally more expensive attacks, such as CW [26], JSMA [201], and

others [189, 243, 286]. As of today, Projected Gradient Descent (PGD) [168], which

utilizes the local first-order network information to compute a maximum loss increment

within a specified `∞ norm-bound, is generally considered as the most effective attack

strategy.

Despite a significant research effort in devising defense mechanisms against adversarial

attacks [202, 228, 241, 283], it was shown in [9] that most such defenses can easily be

breached in the white-box setting, where the attacker knows the network architecture. The

main exception to this rule is adversarial training [168], where the model is trained jointly

with clean images and their adversarial counterparts. Many variants of adversarial training

were thus proposed, such as ensemble adversarial training [254] to soften the classifier’s

decision boundaries, ALP [117] to minimize the difference between the logit activations

of real and adversarial images, the use of additional feature denoising blocks [285], of

metric learning [48, 173], and of regularizers to penalize changes in the model’s prediction

w.r.t. the input perturbations [225, 303]. Nevertheless, PGD-based adversarial training

remains the method of choice, thanks to its robustness and generalizability to unseen

attacks [26, 79, 137, 182, 253].

Unfortunately, adversarial training is computationally expensive. This was tackled

in [234] by recycling the gradients computed to update the model parameters so as to

reduce the overhead of generating adversarial examples, albeit not remove this overhead

entirely. More recently, [272] showed that combining the single-step FGSM with random

initialization is almost as effective as PGD-based training, but at a significantly lower

cost. Unlike all of the adversarial training strategies, our approach does not require

computing adversarial images, and does not depend on a specific attack scheme. Instead,

it aims to ensure a maximal separation between the different classes in high attention

regions. This significantly differs from [186, 187], which clusters the penultimate layer’s

global representation, without focusing on discriminative regions and without attempting

to separate these features. Furthermore, and more importantly, in contrast to all the

above-mentioned methods, our approach is tailored to fine-grained recognition, making

use of the representations that have proven effective in this field, such as Bags of

Words (BoW) [109, 266] and VLAD [5, 75], which have the advantage over second-order

features [73, 127, 292] of providing some degree of interpretability.

52

4.3. Interpreting Adversarial Attacks

Interpretability. Understanding the decisions of a DNN is highly important in real-

world applications to build user trust. In the context of general image recognition,

the trend of interpreting a DNN’s decision was initiated by [297], followed by the

popular CAMs [316]. Subsequently, variants of CAMs [28, 232] and other visualization

strategies [195] were proposed.

Here, in contrast to these works, we focus on the task of fine-grained recognition. In

this domain, BoW-inspired representations, such as the one of [29, 72, 188, 265, 267],

were shown to provide some degree of interpretability. While most methods [72, 188,

265, 267] allows one to highlight the image regions important for classification, it does

not provide one with visual explanations of the network’s decisions. This is addressed by

ProtoPNet [29], which extracts class-specific prototypes. However, the feature embedding

learnt by ProtoPNet gives equal importance to all image regions, resulting in a large

number of prototypes representing non-discriminative background regions, as illustrated

by Fig. 4.1. Here, we overcome this by designing an attention-aware system that learns

prototypes which are close to high-attention regions in feature space, while constraining

the non-discriminative regions from all classes to be close to each other. Furthermore, we

show that this brings about not only interpretability, but also robustness to adversarial

attacks, which has never been studied in the context of fine-grained recognition.

4.3 Interpreting Adversarial Attacks

Before delving into our method, let us study in more detail the experiment depicted by

Fig. 4.1 to understand the decision of a fine-grained recognition CNN under adversarial

attack. For this analysis, we experiment with two networks: the second-order attentional

pooling network of [74] and the ProtoPNet of [29], both of which inherently encode some

notion of interpretability in their architecture, thus not requiring any post-processing.

Specifically, [74] uses class attention maps to compute class probabilities, whereas [29]

exploits the similarity between image regions and class-specific prototypes. We analyze

the reasons for the success of adversarial attacks on four images from the Black-footed

albatross class.

As shown in Fig 4.1(a), under attack, [74] misclassifies all four images to Layman

albatross. Note that these two classes belong to the same general Albatross family, and,

for clean samples, the region with the highest attention for these two classes is the bird’s

beak. Because the discriminative regions for these two classes correspond to the same

beak region, which looks similar in both classes, the attack becomes easier as minimal

perturbation is needed to change the class label.

In the case of ProtoPNet [29], while the network also consistently misclassifies the attacked

images, the resulting label differs across the different images, as shown in Fig. 4.1 (b).

In the top row, the situation is similar to that occurring with the method of [74]. By

53

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.3 – Overview of our framework. Our approach consists of two modules
acting on the features extracted by a backbone network. The attention module extracts
attention maps that help the network to focus on the discriminative image regions. The
feature regularization module further uses the attention maps to encourage separating
the learned prototypes belonging to different classes.

contrast, in the second row, the region activated in the input image corresponds to a

different semantic part (wing) than that activated in the prototype (beak). Finally, in

the last two rows, the network activates a background prototype that is common across

the other categories and thus more vulnerable to attacks.

In essence, the mistakes observed in Fig 4.1 come from either the discriminative regions

of two different classes being two close in feature space, or the use of non-discriminative

regions for classification. This motivates us to encourage the feature representation of

discriminative regions from different classes to be maximally separated from each other,

while minimizing the influence of background regions by making use of attention and

by encouraging the features in these regions to lie close to each other so as not to be

discriminative. This will complicate the attacker’s task, by preventing their ability to

leverage non-discriminative regions and forcing them to make larger changes in feature

space to affect the prediction.

4.4 Method

In this section, we introduce our approach to increasing the robustness of fine-grained

recognition by maximal separation of class-specific discriminative regions. Figure 4.3

gives an overview our framework, which consists of two modules post feature extraction:

(i) An attention module that learns class-specific filters focusing on the discriminative

regions; and (ii) a feature regularization module that maximally separates the class-

54

4.4. Method

specific features deemed discriminative by the attention module. Through the feature

regularization module, we achieve the dual objective of providing interpretability and

increasing the robustness of the backbone network to adversarial attacks.

Note that, at inference time, we can either use the entire framework for prediction, or treat

the attention module, together with the backbone feature extractor, as an standalone

network. As will be demonstrated by our experiments, both strategies yield robustness

to adversarial attacks, which evidences that our approach in fact robustifies the final

feature map. Below, we first describe the overall architecture of our framework and then

discuss the feature regularization module in more detail.

4.4.1 Architecture

Formally, let Ii denote an input image, and Xi ∈ RH×W×D′ represent the corresponding

feature map extracted by a fully-convolutional backbone network. Our architecture

is inspired by the ProtoPNet of [29], in the sense that we also rely on class-specific

prototypes. However, as shown in Section 4.3, ProtoPNet fails to learn discriminative

prototypes, because it allows the prototypes to encode non-discriminative background

information and to be close in feature space even if they belong to different classes. To

address this, we propose to focus on the important regions via an attention mechanism

and to regularize the prototypes during training.

Specifically, our attention module consists of two sets of filters: (i) A class-agnostic

1× 1×D′ filter yielding a single-channel map of size H ×W ; and (ii) K class-specific

1× 1×D′ filters producing K maps of size H ×W corresponding to the K classes in the

dataset. Each of the class-specific map is then multiplied by the class-agnostic one, and

the result is spatially averaged to generate a K-dimensional output. As shown in [74],

this multiplication of two attention maps is equivalent to a rank-1 approximation of

second-order pooling, which has proven to be well-suited to aggregate local features for

fine-grained recognition.

The second branch of our network extracts interpretable prototypes and is responsible to

increase the robustness of the features extracted by the backbone. To this end, Xi is

first processed by two 1× 1 convolutional layers to decrease the channel dimension to

D. The resulting representation is then passed through a prototype layer that contains

m learnable prototypes of size 1× 1×D, resulting in m similarity maps of size H ×W .

Specifically, the prototype layer computes the residual vector r between each local feature

and each prototype, and passes this distance through an activation function defined

as f(r) = log
(
(‖r‖22 + 1)/(‖r‖22 + γ)

)
, where γ is set to 1e − 5. In contrast to [29],

to focus on discriminative regions, we modulate the resulting similarity maps with an

attention map Ai, computed by max-pooling the final class-specific maps of the attention

module. We then spatially max-pool the resulting attention-aware similarity maps to

55

Chapter 4. Towards Robust Fine-grained Recognition

obtain similarity scores, which are passed through the final classification layer to yield

class probabilities. As in [29], we make the prototypes class specific by splitting the m

prototypes into K sets of c prototypes and initializing the weights of the classification

layer of the prototype branch to +1 for positive connections between prototype and class

label and -0.5 for negative ones. While exploiting attention encourages the prototypes to

focus on the discriminative regions, nothing explicitly prevents prototypes from different

classes to remain close in feature space, thus yielding a small margin between different

classes and making the classifier vulnerable to attacks. This is what we address below.

4.4.2 Discriminative Feature Separation

To learn a robust feature representation, we introduce two feature regularization losses

that aim to maximally separate the prototypes of different classes. Let xti represent a local

feature vector at location t in feature map Xi from image Ii with label yi. Furthermore,

let N = W · H be the total number of feature vectors in Xi, and Pyi be the set of

prototypes belonging to class yi.

Our regularization consists of two attention-aware losses, a clustering one and a separation

one. The attentional-clustering loss pulls the high-attention regions in a sample close to

the nearest prototype of its own class. We express this as

Lattclst(Ii) =
N∑
t=1

ati min
l:pl∈Pyi

‖xti − pl‖22 , (4.1)

where ati is the attention value at location t in Ai. By contrast, the attentional-separation

loss pushes the high-attention regions away from the nearest prototype of any other class.

We compute it as

Lattsep(Ii) = −
N∑
t=1

ati min
l:pl 6∈Pyi

‖xti − pl‖22 . (4.2)

While these two loss functions encourage the prototypes to focus on high-attention,

discriminative regions, they leave the low-attention regions free to be close to any

prototype, thus increasing the vulnerability of the network to attacks. We therefore

further need to push the non-discriminative regions away from such informative prototypes.

A seemingly natural way to achieve this would consist of exploiting inverted attention

maps, such as 1− at or 1/at. However, in practice, we observed this to make training

unstable. Instead, we therefore propose to make use of the attention maps from other

samples to compute the loss for sample i. Specifically, we re-write our regularization loss

56

4.5. Experiments

for sample i as

Lreg(Ii) =

B∑
j=1

N∑
t=1

λ1a
t
j min
l:pl∈Pyi

‖xti − pl‖22 − λ2atj min
l:pl 6∈Pyi

‖xti − pl‖22 , (4.3)

where B is the number of samples in the mini-batch. When j = i, we recover the two

loss terms defined in Eqs. 4.1 and 4.2. By contrast, when j 6= i, we exploit the attention

map of a different sample. The intuition behind this is that either the attention map of

sample j focuses on the same regions as that of sample i, and thus the loss serves the

same purpose as when using the attention of sample i, or it focuses on other regions,

and the loss then pushes the corresponding feature map, encoding a low-attention region

according to the attention map of sample i, to its own prototype in class yi. In practice,

we have observed this procedure to typically yield a single background prototype per class.

These background prototypes inherently become irrelevant for classification because they

correspond to low-attention regions and have thus a similarity score close to zero, thanks

to our attention-modulated similarity maps. As such, we have empirically found that all

background prototypes tend to cluster.

Ultimately, we write our total loss function for sample i as

L(Ii) = CEatt(Ii) + CEreg(Ii) + Lreg(Ii) ,

where CEatt and CEreg represent the cross-entropy loss of the attention module and the

feature regularization module, respectively.

At inference time, we perform adversarial attacks on the joint system by exploiting the

cross-entropy loss of both the attention and feature regularization module. Furthermore,

we also attack the attention module on its own, showing that, together with the feature

extraction backbone, it can be used as a standalone network and also inherits robustness

from our training strategy.

4.5 Experiments

4.5.1 Experimental Setting

Datasets. We experiment on two popular fine-grained datasets, Caltech UCSD Birds

(CUB) [259] and Stanford Cars-196 [133].

Threat Model. We consider both white-box and black-box attacks under an `∞-norm

budget. We evaluate robustness for two attack tolerances ε = {2/255, 8/255}. In addition

to the popular 10-step PGD attack [168], we test our framework with FGSM [79],

57

Chapter 4. Towards Robust Fine-grained Recognition

BIM [137], and MI [52] attacks. For PGD attacks, we set the step size α to 1/255 for

ε = 2/255 and to 2/255 for ε = 8/255. For the other attacks, we set number of iterations

to 10 and the step size α to ε divided by the number of iterations, as in [173, 186].

For black-box attacks, we transfer the adversarial examples generated using 10-step

PGD with ε = 8/255 and α = 2/255 on either a similar VGG16 [237] architecture, or a

completely different DenseNet-121 [99] architecture. We denote by BB-V and BB-D the

black-box attacks transferred from VGG16 and DenseNet-121, respectively.

Networks. We evaluate our approach using 3 backbone networks: VGG-16 [237], VGG-

19 [237] and ResNet-34 [89]. Similarly to [29], we perform all experiments on images

cropped according to the bounding boxes provided with the dataset, and resize the

resulting images to 224× 224. For both VGG-16 and VGG-19, we use the convolutional

layers until the 4th block to output 7× 7 spatial maps of 512 channels. For ResNet-34,

we take the network excluding the final global average pooling layer as backbone. We

initialize the backbone networks with weights pretrained on ImageNet [46].

Evaluated Methods. As baselines, we use the attentional pooling network (AP) of [74],

and the state-of-the-art ProtoPNet of [29]. We use Ours-FR and Ours-A to denote the

output of our feature regularization module and of our attention module, respectively. In

other words, AP and Ours-A share the same architecture at inference time, and Ours-FR

is an attention-aware variant of ProtoPNet. To further boost the performance of the

baselines and of our approach, we perform adversarial training. Specifically, we generate

adversarial examples using the recent fast adversarial training strategy of [272], which

relies on a single step FGSM with random initialization. During training, we set ε to

8/255 and α to 1.25ε as suggested in [272]. This was shown in [272] to perform on par

with PGD-based adversarial training, while being computationally much less expensive.

For our approach, during fast adversarial training, we use the cross-entropy loss of both

modules to generate the adversarial images. We denote by AP∗ and ProtoPNet∗

the adversarially-trained AP and ProtoPNet baselines, respectively, and by Ours-FR∗

and Ours-A∗ the adversarially-trained counterparts of our two sub-networks. We also

compare with state-of-the-art defense [186] which regularizes the hidden space with

additional prototype conformity loss (PCL).

4.5.2 Results on CUB 200

Quantitative Analysis. We first compare the accuracy of our method to that of the

baselines with the three backbone networks on CUB200. Table 4.1 and Table 4.2 provide

the results for vanilla and fast adversarial training, respectively. On the clean samples,

Ours-FR typically surpasses its non-attentional counterpart ProtoPNet [29], and

Ours-A yields the better accuracy than baseline AP and AP+PCL across all backbones.

This is true both without (Table 4.1) and with (Table 4.2) adversarial training.

58

4.5. Experiments

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network (Steps,ε) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)

V
G
G
-1

6 AP [74] 78.0% 36.5% 31.0% 27.7% 14.6% 23.5% 11.7% 30.2% 16.7% 9.6% 60.4%
AP+ PCL [186] 80.0% 41.0% 33.1% 32.9% 13.6% 23.5% 9.6% 35.3% 17.1% 10.6% 65.8%
Ours-A 80.4% 47.2% 40.2% 40.0% 23.2% 35.3% 21.8% 42.2% 26.4% 12.9% 66.9%

ProtoPNet [29] 69.0% 19.9% 8.10% 3.80% 0.00% 2.20% 0.00% 5.00% 0.10% 22.9% 58.5%
ProtoPNet+Ours 73.2% 45.6% 40.7% 40.4% 31.7% 37.3% 27.3% 40.7% 34.2% 15.4% 59.7%

V
G
G
-1

9 AP [74] 75.7% 20.4% 14.5% 13.4% 6.9% 10.5% 5.7% 14.8% 6.9% 21.1% 61.3%
AP+ PCL [186] 76.9% 20.3% 14.8% 12.1% 5.7% 8.8% 4.2% 13.9% 6.8% 19.8% 60.2%
Ours-A 79.7% 51.4% 44.6% 42.3% 26.5% 36.8% 26.3% 45.0% 29.9% 29.8% 68.2%

ProtoPNet [29] 73.8% 22.9% 11.1% 3.2% 0.0% 1.2% 0.0% 3.6% 0.0% 21.0% 58.0%
Ours-FR 75.4% 52.2% 46.3% 46.6% 41.3% 42.4% 31.0% 44.4% 37.6% 30.4% 63.7%

R
e
sN

e
t-
3
4 AP [74] 79.9% 30.4% 26.3% 18.0% 7.20% 13.2% 5.8% 22.3% 8.6% 43.0% 59.4%

AP+ PCL [186] 77.9% 30.1% 24.5% 21.4% 13.3% 17.6% 11.6% 23.9% 15.3% 45.7% 61.4%
Ours-A 79.0% 32.3% 27.0% 24.8% 20.5% 22.5% 19.8% 26.2% 22.0% 48.6% 63.2%

ProtoPNet [29] 75.1% 23.2% 12.8% 7.80% 1.80% 4.10% 1.00% 8.90% 2.20% 39.1% 53.0%
Ours-FR 76.3% 30.7% 22.0% 19.3% 13.6% 14.2% 13.0% 19.1% 13.8% 46.0% 60.0%

Table 4.1 – Classification accuracy of different networks with `∞ based attacks on CUB200.
The best result of each column and each backbone is shown in bold. The last two columns
correspond to black-box attacks with PGD attack.

Under adversarial attack, our approach, without and with adversarial training, yields

better robustness under almost all attacks and backbones. Importantly, the boost in

performance is larger for attacks with larger perturbations. Furthermore, our model

trained with clean samples sometimes outperform even the adversarially-trained baselines.

For example, on VGG-16 with PGD attack with ε = 8/255, AP∗ yields an accuracy of

16.9% (Table 4.2) while Ours-A reaches 21.8% accuracy (Table 4.1). This evidences the

ability of our feature regularization module to learn robust features, even without seeing

any adversarial examples. This is further supported by the fact that, despite AP and

Ours-A having the same architecture at inference, Ours-A is more robust to attacks.

Our method outperforms AP+PCL in most cases since PCL do not take into account

subtle difference in local regions and regularizes global representation only. Note also

that the gap in clean accuracy between standard and adversarial training is smaller for

our approach than for the baselines.

Transferability Analysis. To evaluate robustness to black-box attacks, we transfer

adversarial examples generated from substitute networks to our framework and to the

baselines. As substitute models, we use a VGG-16 [237] and DenseNet-121 [99] backbone

followed by global average pooling and a classification layer. The corresponding results

are reported in the last two columns of Table 4.1 and Table 4.2. As in the white-box

case, our approach outperforms the baselines in this black-box setting, thus confirming

its effectiveness at learning robust features.

Decision-based Attacks. As suggested in [9], white-box attacks can give a false sense

of security due to gradient obfuscation. Therefore, to understand the superiority of

59

Chapter 4. Towards Robust Fine-grained Recognition

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network(Steps,ε) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)

V
G
G
-1

6 AP∗ [74] 54.9% 44.9% 24.2% 41.9% 18.2% 41.2% 16.9% 41.9% 18.7% 54.6% 54.0%
AP+PCL∗ [186]60.7% 50.5% 28.5% 47.1% 22.8% 46.7% 21.6% 47.2% 23.5% 59.5% 59.9%
Ours-A∗ 69.3%56.1%34.8%51.7% 29.6%50.8%28.0% 52.0%32.5%66.3%68.0%

ProtoPNet∗ [29] 60.1% 44.5% 26.9% 57.1% 10.9% 35.9% 10.3% 37.6% 13.5% 58.4% 59.1%
Ours-FR∗ 63.0%53.3%37.3%49.4% 30.4%48.1%28.6% 49.7%31.1%61.1%62.0%

V
G
G
-1

9 AP∗ [74] 58.0% 47.5% 29.1% 44.3% 25.6% 44.0% 24.34%44.4% 26.2% 57.0% 57.3%
AP+PCL∗ [186]61.8% 52.1% 30.9% 48.9% 24.7% 48.6% 23.3% 49.1% 25.4% 60.5% 60.9%
Ours-A∗ 68.2%57.1%36.5%53.2% 30.4%52.6%29.2% 53.5%31.2%66.2%66.9%

ProtoPNet∗ [29] 55.1% 40.0% 28.9% 26.5% 11.3% 29.7% 9.60% 25.6% 10.2% 53.6% 53.9%
Ours-FR∗ 64.4%55.5%37.4%51.2% 30.6%50.4%28.7% 52.1%32.3%62.5%63.2%

R
e
sN

e
t-
3
4 AP∗ [74] 55.6% 47.8% 29.2% 44.80%21.0% 44.5% 19.4% 44.9% 21.9% 55.3% 55.2%

AP+PCL∗ [186]54.5% 45.4% 26.9% 42.3% 18.2% 41.9% 16.4% 42.4% 19.1% 54.0% 54.0%
Ours-A∗ 61.9%53.6%35.4%50.9% 25.8%50.4%23.1% 51.1%27.3%61.0%61.3%

ProtoPNet∗ [29]57.9%46.5% 30.3% 41.1% 21.1% 40.3% 18.4% 41.5% 20.9% 56.9% 57.0%
Ours-FR∗ 58.9% 50.7%32.4%47.4% 22.8%46.8%20.1% 47.6%27.2%58.1%58.2%

Table 4.2 – Classification accuracy of different robust networks with `∞ based attacks
on CUB200. The best result of each column and each backbone is shown in bold. The
last two columns correspond to black-box attacks with PGD attack.

our framework, we conduct a decision-based Square attack [4] with ε = 8 for a query

budget up to 1500. Due to the high computational complexity of the attack, we run

the experiments on a subset of test data of 1400 images. As observed from Figures 4.4

and 4.5, Our training framework achieves higher robust accuracy on all cases. The

differences w.r.t to baselines is more pronounced for higher query budgets.

Auto-attack. Furthermore, we evaluate our defense on the latest auto attack [43]

framework which consists of four diverse parameter-free gradient-based and decision-

based attacks. We could not run the FAB [42] attack proposed in the ensemble due to

prohibitive computational times. We therefore evaluate on the rest of the three attacks

namely, APGD (CE), APGD(DLR) and Square attack with ε = 8. As shown from the

Table 4.3, our framework performs better than the baselines for all the three backbones

for the rest of the three attacks.

Qualitative Analysis. Let us now qualitatively evidence the benefits of our approach.

To this end, in Figure 4.6, we visualize the 10 class-specific prototypes learned by

ProtPNet and by our approach for the Blackfooted albatross class. Specifically, we show

the activation heatmaps of these prototypes on the source image that they have been

projected to. Note that ProtoPNet learns multiple background prototypes, whereas

our approach encodes all the background information in a single non-discriminative

prototype. Furthermore, ProtoPNet [29] focuses on much larger regions, which can

be expected to be less discriminative than the fine-grained regions obtained using our

approach. This is due to our use of attention, which helps the prototypes to focus on the

60

4.5. Experiments

(a) VGG16 (b) VGG19 (c) ResNet34

(d) VGG16 (e) VGG19 (f) ResNet34

Figure 4.4 – `∞-Square attacks on undefended networks. Classification accuracy
of different undefended networks with ε = 8 by varying the query budget on 1400 samples
of CUB200.

areas that are important for classification.

In Figure 4.7, we analyze the effect of adversarial attacks on AP, ProtoPNet and our

approach (all without adversarial training) by visualizing the attention maps and/or a

few top activated prototypes along with their similarity scores for a Blackfooted albatross

image with and without attack. Without attack, AP activates a larger region than

our attention module. Furthermore, ProtoPNet activates a prototype from a different

class (Cape glossay starling), while our approach focuses on the correct class only. This

already shows that the features learned by these baselines are less discriminative, making

them more vulnerable to adversarial attacks. As a matter of fact, under attack, AP

focuses on a different region that is not discriminative for the Blackfooted albatross class.

Similarly, ProtoPNet activates prototypes of different classes with high similarity scores,

highlighting non-discriminative regions. By contrast, the prototypes activated by our

approach remain the same as in the clean case, thus corresponding to the correct class.

Gradient Obfuscation. As suggested in [9], we check the gradient obfuscation to

61

Chapter 4. Towards Robust Fine-grained Recognition

(a) VGG16 (b) VGG19 (c) ResNet34

(d) VGG16 (e) VGG19 (f) ResNet34

Figure 4.5 – `∞-Square attacks on robust networks. Classification accuracy of
different robust networks with ε = 8 by varying the query budget on 1400 samples of
CUB200.

ensure that proposed approach do not give false sense of security. As shown in Figure 4.8,

VGG-16 trained with our feature regularization performance drops as the perturbation

norm increases. Further, from Table 4.1 and 4.5, the black-box attacks are less successful

than white box attacks. Both these experiments suggest our formulation do not suffer

from gradient obfuscation, as was also evidenced from the results of autoattack.

Adversarial sample detection. Our formulation also helps in detecting adversarial

samples due to well separation of discriminative regions. Following [142], we learn a

logistic detector by computing mahalanobis distance to the nearest class-conditional

Gaussian distribution as the feature at every layer of the network. As shown in Figure 4.9,

our proposed feature regularization approach increases the detection AUROC performance

over the baselines by around 20%.

Ablation Study. To understand the importance of each module in achieving robustness,

we perform ablation study on VGG-16. As shown from Table 4.4, our attention-aware

formulation performs better than baseline even without feature regularization. However

62

4.5. Experiments

Base Attacks Clean APGD (CE) APGD (DLR) Square Auto attack

V
G
G
-1

6 AP∗ [74] 54.9% 15.1% 14.0% 39.2% 22.7%
AP+PCL∗ [186] 60.7% 18.0% 14.1% 42.9% 25.0%
Ours-A∗ 67.0% 23.7% 15.1% 47.3% 28.7%

ProtoPNet∗ [29] 55.6% 2.8% 2.3 % 31.6% 12.2%
Ours-FR∗ 60.4% 24.2% 15.5% 46.2% 28.6%

V
G
G
-1

9 AP∗ [74] 55.7% 20.2% 14.4% 44.1% 26.2%
AP+PCL∗ [186] 59.7% 20.8% 17.3% 51.1% 29.7 %
Ours-A∗ 65.0% 24.4% 17.4% 51.9% 31.2%

ProtoPNet∗ [29] 51.9% 1.1 % 1.0 % 28.0% 10.0%
Ours-FR∗ 62.1% 27.4% 18.5% 52.1% 32.7%

R
e
sN

e
t-
3
4 AP∗ [74] 53.6% 18.8% 20.1% 44.7% 27.9 %

AP+PCL∗ [186] 52.6% 15.9% 17.2% 44.0% 25.7 %
Ours-A∗ 59.2% 20.7% 23.7% 50.1% 31.5%

ProtoPNet∗ [29] 52.6% 15.9% 17.2% 44.0% 25.7%
Ours-FR∗ 56.4% 18.0% 20.0% 48.7% 28.9%

Table 4.3 – Classification accuracy of different robust networks with `∞ based state-
of-the-art Auto attack [43] ensemble on CUB200 with ε = 8. The best result of each
column and each backbone is shown in bold.

by adding attentional cluster and separation cost, we achieve significant improvements

over the baselines.

4.5.3 Results on Stanford Cars

We now present on results on Stanford Cars [133]. In Table 4.5, we report the results

obtained using vanilla training. As in the CUB case, our approach yields better robustness

than the baselines.

Figure 4.6 – Comparison of the prototypes learned with ProtoPNet [29] and
with our approach on CUB. ProtoPNet yields multiple background prototypes and
prototypes that focus on large regions. By contrast, our prototypes are finer-grained and
thus more representative of the specific class in the images.

63

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.7 – Comparison of the activated image regions without and with
attack. Without attack, the baselines (AP and ProtoPNet) tend to rely on relatively
large regions, sometimes corresponding to wrong classes, for prediction. By contrast, our
approach focuses more closely on the discriminative regions. Under PGD attack, this
phenomenon is further increased, with ProtoPNet and AP activating incorrect prototypes
and regions. The activations obtained with our approach remain similar to those obtained
without attacks, albeit with a decrease in the similarity scores, indicated above the top
prototype activation maps.

In Figure 4.10, we compare the prototypes learned with ProtoPNet and with our approach

for the Accura TL Sedan class. As before, while the prototypes learned by ProtoPNet cover

large regions, those obtained with our framework are more focused on the discriminative

parts of the car.

In Table 4.6, we report the robustness of fast adversarial training [272] with our discrim-

inative feature separation approach. Our approach, Ours-FR∗, performs better than

the baseline ProtoPNet∗ [29] in all cases. Note that, for multi-step iterative attacks,

Ours-A∗ performs better than AP∗, while they achieve comparable performance for

single-step attacks.

4.5.4 Training Details

We implemented our approach using the PyTorch library, and ran our experiments on a

single 32GB Tesla GPU. We set the mini-batch size B to 75 during training. Similarly

64

4.5. Experiments

Network Att-clustering Att-separation Clean PGD
loss loss (0,0) (10,8)

AP [74] - - 78.0% 11.7%

Ours-A

- - 78.7% 14.07%
- X 79.6% 0.0%
X - 80.0% 19.3%
X X 80.4% 21.8%

Network Att-clustering Att-separation Clean PGD
loss loss (0,0) (10,8)

ProtoPNet [29] - - 69.0% 0.0%

Ours-FR

- - 75.7% 13.76%
- X 69.8% 0.0%
X - 73.7% 18.7%
X X 73.2% 30.1%

Table 4.4 – Ablation study. Contribution of each proposed feature regularization
module in classification accuracy of undefended VGG-16 network.

Figure 4.8 – Performance of VGG-16 with our proposed
approach under different perturbation strengths.

Figure 4.9 – ROC curves
for adversarial sample de-
tection on robust VGG-16
with PGD attack.

to [29], we initialize the last layer of the prototype branch with +1 for positive and -0.5 for

negative connection between prototype and class label. We set c = {5, 10} prototypes per

class, λ1 to {10, 100} and λ2 = 0.08 depending on the dataset and architecture. We first

fine-tune the attention and feature regularization modules, except for the classification

layer of the latter, for 5 epochs with a learning rate of 0.0003, keeping the backbone

network fixed. We then jointly train all the layers, except the feature regularization

classifier, to minimize the objective of Eq. 3 for 25 epochs, with an initial learning rate

of 0.003 and a decay rate of 0.1 applied every 10 epochs. After 30 epochs, we project

the prototypes to the nearest training image patch of the same class and optimize the

classification layer of the feature regularization module for 15 epochs. Note that for AP∗

on CUB200 with VGG19 backbone, we set slightly larger α = 1.30ε instead of 1.25ε as we

found the training did not converge possibly due to phenemenon of catastropic forgetting.

65

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.10 – Comparison of the prototypes learned with ProtoPNet [29] and
with our approach on Stanford-Cars. ProtoPNet yields prototypes that cover large
regions, whereas our prototypes more focused.

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Nettwork (Steps,ε) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)

V
G
G
-1

6

AP [74] 91.2% 52.6% 40.2% 37.4% 10.5% 28.8% 6.93% 41.7% 12.9% 12.5% 82.5%
AP+Triplet [231] 91.1% 54.3% 43.5% 42.4% 14.9% 34.1% 9.54% 45.5% 19.2% 15.6% 84.7%
AP+PCL [186] 90.2% 51.7% 40.5% 39.3% 14.1% 31.8% 9.44% 42.5% 17.5% 16.7% 83.9%
Ours-A 88.5% 58.7% 40.2% 48.0% 28.6% 46.5% 21.7% 53.2% 33.2% 19.9% 82.2%

ProtoPNet [29] 84.5% 31.2% 9.85% 4.78% 0.01% 2.23% 0.00% 6.5% 0.01% 27.8% 75.5%
Ours-FR 83.8% 60.1% 52.0% 51.3% 41.0% 47.8% 32.9% 51.8% 43.9% 23.4% 75.1%

V
G
G
-1

9

AP [74] 91.5% 50.1% 37.8% 33.4% 10.3% 23.83% 6.93% 37.9% 12.7% 20.7% 82.8%
AP+Triplet [231] 91.0% 56.2% 45.1% 40.5% 13.0% 30.3% 8.70% 45.3% 16.7% 29.0% 85.0%
AP+PCL [186] 91.3% 61.3% 49.9% 49.0% 19.7% 40.2% 14.1% 52.4% 23.4% 30.6% 85.7%
Ours-A 88.7% 64.4% 54.8% 56.4% 36.7% 51.7% 33.4% 58.1% 41.0% 35.9% 82.5%

ProtoPNet [29] 85.6% 34.1% 20.8% 11.3% 1.11% 4.40% 0.5% 14.2% 1.39% 26.5% 75.5%
Ours-FR 85.0% 62.4% 54.7% 54.5% 45.7% 51.2% 38.5% 54.3% 47.6% 36.1% 76.8%

Table 4.5 – Classification accuracy of different undefended networks with `∞ based
attacks on Cars196.

We use Adam [124] with the default momentum values for all our experiments. For

the adversarial detection experiments, we initially remove the misclassified samples from

the test set. We then consider successfully attacked from this subset and train a logistic

detector with 80% of data and report results on remaining data.

4.5.5 Qualitative Results

In this section, we provide additional qualitative results on CUB200 and Standford Cars.

Visualization of the learned prototypes. In Figure 4.11, we show the activation

heat maps of the prototypes on the source images to which they were projected for our

VGG-16 model. Our method yields fine-grained prototypes that either focus on a small

discriminative region or activate the complete non-discriminative region.

66

4.5. Experiments

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network Steps,ε) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,8) (10,8)

V
G
G
-1

6 AP∗ [74] 86.2% 81.1% 63.6% 78.9% 53.8% 78.7% 50.8% 78.7% 55.1% 85.1% 85.9%
AP+PCL∗ [186] 87.4% 80.5% 59.4% 77.6% 48.5% 77.2% 44.9% 77.9% 50.2% 86.0% 87.1%
Ours-A∗ 84.8% 79.8% 63.3% 77.0% 54.6% 76.6% 51.1% 77.1% 55.8% 84.5% 85.6%

ProtoPNet∗ [29] 64.4% 53.7% 31.9% 48.9% 16.5% 48.2% 13.4% 49.2% 18.2% 63.8% 64.2%
Ours-FR∗ 83.7% 76.37% 62.8% 73.5% 55.0% 72.6% 51.9% 73.8% 55.4% 80.8% 82.0%

Table 4.6 – Classification accuracy of different robust networks with `∞ based attacks
on Cars196. The best result of each column and each backbone is shown in bold. The
last two columns correspond to black-box attacks.

Nearest samples of the learned prototypes. In Figure 4.12, we show the proto-

types and their nearest test images for CUB 200 with VGG-16. In most cases, the

discriminative prototypes activate the same semantic part in all images corresponding to

the same class.

Visualization of the learned prototypes. In Figure 4.13, we show the activation

heat maps of the prototypes on the source images to which they were projected for our

VGG-16 model. Our method yields fine-grained prototypes that either focus on a small

discriminative region or activate the complete non-discriminative region.

Nearest samples of the learned prototypes. In Figure 4.14, we show the proto-

types and their nearest test images for Cars 196 with VGG-16. In most cases, the

discriminative prototypes activate the same semantic part in all images corresponding to

the same class.

67

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.11 – Visualization of the prototypes learned with our approach on
CUB. Our formulation yields prototypes that are fine-grained and representative of the
specific class in the images.

68

4.5. Experiments

Figure 4.12 – Visualization of the nearest test samples for each learned pro-
totypes with our approach on CUB with VGG-16. All prototypes activate
semantically meaningful parts and mostly from the images corresponding to their own
label.

69

Chapter 4. Towards Robust Fine-grained Recognition

Figure 4.13 – Visualization of the prototypes learned with our approach on
Cars-196. Our formulation yields prototypes that are fine-grained and representative of
the specific class in the images.

70

4.5. Experiments

Figure 4.14 – Visualization of the nearest test samples for each learned pro-
totypes with our approach on Cars 196 with VGG-16. All prototypes activate
semantically meaningful parts and mostly from the images corresponding to their own
label.

71

Chapter 4. Towards Robust Fine-grained Recognition

4.6 Conclusion

In this chapter, we have performed the first study of adversarial attacks for fine-grained

recognition. Our analysis has highlighted the key factor for the success of adversarial

attacks in this context. This has inspired us to design an attention- and prototype-based

framework that explicitly encourages the prototypes to focus on the discriminative image

regions. Our experiments have evidenced the benefits of our approach, despite not

requiring seeing adversarial examples during training. We further observed improving

AUROC score of adversarial sample detection on the adversarially trained models. In

the following two chapters, we go beyond image classification and design attacks to shed

light on the internal workings of DNNs on other tasks.

72

5 Indirect Local Attacks for

Context-aware Semantic

Segmentation Networks

In the previous chapters, we studied the adversarial attacks limited to image recognition.

From this chapter onwards, we turn our focus on designing adversarial attacks on other

tasks to understand DNNs’ limitations. Recently, deep networks have achieved impressive

semantic segmentation performance, in particular thanks to their use of larger contextual

information. In this chapter, we show that the resulting networks are sensitive not only to

global adversarial attacks, where perturbations affect the entire input image, but also to

indirect local attacks, where the perturbations are confined to a small image region that

does not overlap with the area that the attacker aims to fool. To this end, we introduce

an indirect attack strategy, namely adaptive local attacks, aiming to find the best image

location to perturb, while preserving the labels at this location and producing a realistic-

looking segmentation map. Furthermore, we propose attack detection techniques both at

the global image level and to obtain a pixel-wise localization of the fooled regions. Our

results are unsettling: Because they exploit a larger context, more accurate semantic

segmentation networks are more sensitive to indirect local attacks. We believe that

our comprehensive analysis will motivate the community to design architectures with

contextual dependencies that do not trade off robustness for accuracy.

5.1 Introduction

Deep Neural Networks (DNNs) are highly expressive models and achieve state-of-the-

art performance in many computer vision tasks. In particular, the powerful backbones

originally developed for image recognition have now be recycled for semantic segmentation,

via the development of fully convolutional networks (FCNs) [163]. The success of these

initial FCNs, however, was impeded by their limited understanding of surrounding context.

As such, recent techniques have focused on exploiting contextual information via dilated

convolutions [291], pooling operations [159, 310], or attention mechanisms [71, 311].

73

Chapter 5. Indirect Local Attacks

Despite this success, recent studies have shown that DNNs are vulnerable to adversarial

attacks. That is, small, dedicated perturbations to the input images can make a network

produce virtually arbitrarily incorrect predictions. While this has been mostly studied

in the context of image recognition [52, 138, 182, 196, 201], a few recent works have

nonetheless discussed such adversarial attacks for semantic segmentation [8, 92, 284].

These methods, however, remain limited to global perturbations to the entire image.

Here, we argue that local attacks are more realistic, in that, in practice, they would

allow an attacker to modify the physical environment to fool a network. This, in some

sense, was the task addressed in [62], where stickers were placed on traffic poles so that

an image recognition network would misclassify the corresponding traffic signs. In this

scenario, however, the attack was directly performed on the targeted object.

(a) Adversarial image (b) Ground Truth

(c) FCN [163] (d) PSPNet [310]

(e) PSANet [311] (f) DANet [71]

Figure 5.1 – Indirect Local Attacks. An adversarial input image (a) is attacked with
an imperceptible noise in local regions, shown as red boxes, to fool the dynamic objects.
Such indirect local attacks barely affect an FCN [163] (c). By contrast, modern networks
that leverage context to achieve higher accuracy on clean (unattacked) images, such as
PSPNet [310] (d), PSANet [311] (e) and DANet [71] (f) are more strongly affected,
even in regions far away from the perturbed area.

74

5.1. Introduction

In this chapter, by contrast, we study the impact of indirect local attacks, where the

perturbations are performed on regions outside the targeted objects. This, for instance,

would allow one to place a sticker on a building to fool a self-driving system such that all

nearby dynamic objects, such as cars and pedestrians, become mislabeled as the nearest

background class. We choose this setting not only because it allows the attacker to

perturb only a small region in the scene, but also because it will result in realistic-looking

segmentation maps. By contrast, untargeted attacks would yield unnatural outputs,

which can much more easily be detected by a defense mechanism. However, designing

such targeted attacks that are effective is much more challenging than untargeted ones.

To achieve this, we first investigate the general idea of indirect attacks, where the

perturbations can occur anywhere in the image except on the targeted objects. We then

switch to the more realistic case of localized indirect attacks, and design a group sparsity-

based strategy to confine the perturbed region to a small area outside of the targeted

objects. For our attacks to remain realistic and imperceptible, we perform them without

ground-truth information about the dynamic objects and in a norm-bounded setting. In

addition to these indirect attacks, we evaluate the robustness of state-of-the-art networks

to a single universal fixed-size local perturbation that can be learned from all training

images to attack an unseen image in an untargeted manner.

The conclusions of our experiments are disturbing: In short, more accurate semantic

segmentation networks are more sensitive to indirect local attacks. This is illustrated by

Figure 5.1, where perturbing a few patches in static regions has much larger impact on

the dynamic objects for the context-aware PSPNet [310], PSANet [311] and DANet [71]

than for a simple FCN [163]. This, however, has to be expected, because the use of

context, which improves segmentation accuracy, also increases the network’s receptive

field, thus allowing the perturbation to be propagated to more distant image regions.

Motivated by this unsettling sensitivity of segmentation networks to indirect local attacks,

we then turn our focus to adversarial attack detection. In contrast to the existing work

that tackled attack detection for semantic segmentation [277], we perform detection not

only at the global image level, but locally at the pixel level. Specifically, we introduce an

approach to localizing the regions whose predictions were affected by the attack, i.e., not

the image regions that were perturbed. In an autonomous driving scenario, this would

allow one to focus more directly on the potential dangers themselves, rather than on the

image regions that caused them.

To summarize, our contributions are as follows. We introduce the idea of indirect local

adversarial attacks for semantic segmentation networks, which better reflects potential

real-world dangers. We design an adaptive, image-dependent local attack strategy to find

the minimal location to perturb in the static image region. We show the vulnerability

of modern networks to a universal, image-independent adversarial patch. We study the

impact of context on a network’s sensitivity to our indirect local attacks. We introduce a

75

Chapter 5. Indirect Local Attacks

method to detect indirect local attacks at both image level and pixel level. Our code is

available at https://github.com/krishnakanthnakka/Indirectlocalattacks/.

5.2 Related Work

Context in Semantic Segmentation Networks. While context has been shown to

improve the results of traditional semantic segmentation methods [76, 90, 126, 131],

the early deep fully-convolutonal semantic segmentation networks [87, 163] only gave

each pixel a limited receptive field, thus encoding relatively local relationships. Since

then, several solutions have been proposed to account for wider context. For example,

UNet [224] uses contracting path to capture larger context followed by a expanding

path to upsample the intermediate low-resolution representation back to the input

resolution. ParseNet [159] relies on global pooling of the final convolutional features to

aggregate context information. This idea was extended to using different pooling strides

in PSPNet [310], so as to encode different levels of context. In [291], dilated convolutions

were introduced to increase the size of the receptive field. PSANet [311] is designed

so that each local feature vector is connected to all the other ones in the feature map,

thus learning contextual information adaptively. EncNet [300] captures context via a

separate network branch that predicts the presence of the object categories in the scene

without localizing them. DANet [71] uses a dual attention mechanism to attend to the

most important spatial and channel locations in the final feature map. In particular, the

DANet position attention module selectively aggregates the features at all positions using

a weighted sum. In practice, all of these strategies to use larger contextual information

have been shown to outperform simple FCNs on clean samples. Here, however, we show

that this makes the resulting networks more vulnerable to indirect local adversarial

attacks, even when the perturbed region covers less than 1% of the input image.

Adversarial Attacks on Semantic Segmentation: Adversarial attacks aim to per-

turb an input image with an imperceptible noise so as to make a DNN produce er-

roneous predictions. So far, the main focus of the adversarial attack literature has

been image classification, for which diverse attack and defense strategies have been pro-

posed [26, 52, 79, 138, 182, 196, 201]. In this context, it was shown that deep networks

can be attacked even when one does not have access to the model weights [162, 199], that

attacks can be transferred across different networks [254], and that universal perturbations

that can be applied to any input image exist [180, 181, 212].

Motivated by the observations made in the context of image classification, adversarial

attacks were extended to semantic segmentation. In [8], the effectiveness of attack

strategies designed for classification was studied for different segmentation networks.

In [284], a dense adversary generation attack was proposed, consisting of projecting the

gradient in each iteration with minimal distortion. In [92], a universal perturbation was

learnt using the whole image dataset. Furthermore, [10] demonstrated the existence of

76

https://github.com/krishnakanthnakka/Indirectlocalattacks/

5.2. Related Work

perturbations that are robust over chosen distributions of transformations.

None of these works, however, impose any constraints on the location of the attack in

the input image. As such, the entire image is perturbed, which, while effective when

the attacker has access to the image itself, would not allow one to physically modify the

scene so as to fool, e.g., autonomous vehicles.

This, in essence, was the task first addressed in [21], where a universal targeted patch

was shown to fool a recognition system to a specific target class. Later, patch attacks

were studied in a more realistic setting in [62], where it was shown that placing a small,

well-engineered patch on a traffic sign was able to fool a classification network into

making wrong decisions. While these works focused on classification, patch attacks have

been extended to object detection [161, 166, 227, 249] and optical flow [218]. Our work

differs fundamentally from these methods in the following ways. First, none of these

approaches optimize the location of the patch perturbation. Second, [21, 161, 227] learn

a separate perturbation for every target class, which, at test time, lets the attacker

change the predictions to one class only. While this is suitable for recognition, it does

not apply to our segmentation setup, where we seek to misclassify the dynamic objects

as different background classes so as to produce a realistic segmentation map. Third,

unlike [21, 62, 218], our perturbations are imperceptible. Finally, while the perturbations

in [62, 218, 249] cover the regions that should be misclassified, and in [161, 227] affect

the predictions in the perturbed region, we aim to design an attack that affects only

targeted locations outside the perturbed region.

In other words, we study the impact of indirect local attacks, where the perturbation is

outside the targeted area. This would allow one to modify static portions of the scene so

as to, e.g., make dynamic objects disappear to fool the self-driving system. Furthermore,

we differ from these other patch-based attacks in that we study local attacks for semantic

segmentation to understand the impact of the contextual information exploited by

different networks, and introduce detection strategies at both image- and pixel-level.

Similarly to most of the existing literature [21, 62, 92, 156, 227, 249], we focus on the

white-box setting for three reasons: (1) Developing effective defense mechanisms for

semantic segmentation, which are currently lacking, requires assessing the sensitivity of

semantic segmentation networks to the strongest attacks, i.e., white-box ones; (2) Recent

model extraction methods [30, 200, 256] allow an attacker to obtain a close approximation

of the deployed model. 3) While effective in classification [199], black-box attacks were

observed to transfer poorly across semantic segmentation architectures [277], particularly

in the targeted scenario.

When it comes to detecting attacks to semantic segmentation networks, only one technique

have been proposed [277]. In [277], detection is achieved by checking the consistency of

predictions obtained from overlapping image patches. In contrast to above work that

77

Chapter 5. Indirect Local Attacks

need either multiple passes through the network, we detect the attack by analyzing the

internal subspaces of the segmentation network. To this end, inspired by the algorithm

of [142] designed for image classification, we compute the Mahalanobis distance of the

features to pre-trained class conditional distributions. In contrast to [277], which study

only global image-level detection, we show that our approach is applicable at both the

image and the pixel level, yielding the first study on localizing the regions fooled by the

attack.

5.3 Indirect Local Segmentation Attacks

Let us now introduce our diverse strategies to attack a semantic segmentation network.

In semantic segmentation, given a clean image X ∈ RW×H×C , where W , H and C are

the width, height, and number of channels, respectively, a network is trained to minimize

a loss function of the form L(X) =
∑W×H

j=1 J(ytruej , f(X)j),

where J is typically taken as the cross-entropy between the true label ytruej and the

predicted label f(X)j at spatial location j. In this context, an adversarial attack is carried

out by optimizing for a perturbation that forces the network to output wrong labels for

some (or all) of the pixels. Below, we denote by F ∈ {0, 1}W×H the fooling mask such

that Fj = 1 if the j-th pixel location is targeted by the attacker to be misclassified and

Fj = 0 is the predicted label should be preserved. We first present our different local

attack strategies, and finally introduce our attack detection technique.

5.3.1 Indirect Local Attacks

To study the sensitivity of segmentation networks, we propose to perform local perturba-

tions, confined to predefined regions such as class-specific regions or patches, and to fool

other regions than those perturbed. For example, in the context of automated driving,

we may aim to perturb only the regions belonging to the road to fool the car regions in

the output label map. This would allow one to modify the physical, static scene while

targeting dynamic objects.

Formally, given a clean image X ∈ RW×H×C , we aim to find an additive perturbation

δ ∈ RW×H×C within a perturbation mask M that yields erroneous labels within the

fooling mask F. To achieve this, we define the perturbation mask M ∈ {0, 1}W×H such

that Mj = 1 if the j-th pixel location can be perturbed and Mj = 0 otherwise.

Let ypredj be the label obtained from the clean image at pixel j. An untargeted attack

can then be expressed as the solution to the optimization problem

δ∗ = arg min
δ

∑
j|Fj=1

−J(ypredj , f(X + M� δ)j) +
∑

j|Fj=0

J(ypredj , f(X + M� δ)j) (5.1)

78

5.3. Indirect Local Segmentation Attacks

which aims to minimize the probability of ypredj in the targeted regions while maximizing

it in the rest of the image.

By contrast, for a targeted attack whose goal is to misclassify any pixel j in the fooling

region to a pre-defined label ytj , we write the optimization problem

δ∗ = arg min
δ

∑
j|Fj=1

J(ytj , f(X + M� δ)j) +
∑
i|Fj=0

J(ypredj , f(X + M� δ)j) . (5.2)

We solve (5.1) and (5.2) via the iterative projected gradient descent algorithm [168] with

an `p-norm perturbation budget ‖M� δ‖p < ε, where p ∈ {2,∞}.

Note that the formulations above allow one to achieve any local attack. To perform

indirect local attacks, we simply define the masks M and F so that they do not intersect,

i.e., M� F = 0, where � is the element-wise product.

5.3.2 Adaptive Indirect Local Attacks

The attacks described in Section 5.3.1 assume the availability of a fixed, predefined

perturbation mask M. In practice, however, one might want to find the best location for

an attack, as well as make the attack as local as possible. In this section, we introduce

an approach to achieving this by enforcing structured sparsity on the perturbation mask.

To this end, we first re-write the previous attack scheme under an `2 budget as an

optimization problem. Let Jt(X,M,F, δ, f,ypred,yt) denote the objective function of

either (5.1) or (5.2), where yt can be ignored in the untargeted case. Following [26],

we write an adversarial attack under an `2 budget as the solution to the optimization

problem

δ∗ = arg min
δ

λ1‖δ‖22 + Jt(X,M,F, δ, f,ypred,yt) , (5.3)

where λ1 balances the influence of the term aiming to minimize the magnitude of the

perturbation. While solving this problem, we further constrain the resulting adversarial

image X+ M� δ to lie in the valid pixel range [0,1].

To identify the best location for an attack together with confining the perturbations

to as small an area as possible, we divide the initial perturbation mask M into T non-

overlapping patches. This can be achieved by defining T masks {Mt ∈ RW×H} such

that, for any s, t, with s 6= t, Ms �Mt = 0, and
∑T

t=1 Mt = M. Our goal then becomes

that of finding a perturbation that is non-zero in the smallest number of such masks.

79

Chapter 5. Indirect Local Attacks

This can be achieved by modifying (5.3) as

δ∗ = arg min
δ

λ2

T∑
t=1

‖Mt � δ‖2 + λ1‖δ‖22 + Jt(X,M,F, δ, f,ypred,yt) , (5.4)

whose first term encodes an `2,1 group sparsity regularizer encouraging complete groups to

go to zero. Such a regularizer has been commonly used in the sparse coding literature [197,

293], and more recently in the context of deep networks for compression purposes [3, 269].

In our context, this regularizer encourages as many as possible of the {Mt � δ} to go to

zero, and thus confines the perturbation to a small number of regions that most effectively

fool the targeted area F. λ2 balances the influence of this term with the other ones.

5.3.3 Universal Local Attacks

The strategies discussed in Sections 5.3.1 and 5.3.2 are image-specific. However, [21]

showed the existence of a universal perturbation patch that can fool an image classification

system to output any target class. In this section, instead of finding optimal locations for

a specific image, we aim to learn a single fixed-size local perturbation that can fool any

unseen image in an untargeted manner. This will allow us to understand the contextual

dependencies of a fixed size universal patch on the output of modern networks. Unlike

in the above-mentioned adaptive local attacks, but as in [21, 162, 218, 227], such a

universal patch attack will require a larger perturbation norm. Note also that, because it

is image-independent, the resulting attack will typically not be indirect.

While [21] uses a different patch for different target classes, we aim to learn a single

universal local perturbation that can fool all classes in the image. This will help to

understand the propagation of the attack in modern networks using different long-range

contextual connections. As will be shown in our experiments in Section 5.4.3, such

modern networks are the most vulnerable to universal attacks, while their effect on FCNs

is limited to the perturbed region. To find a universal perturbation effective across all

images, we write the optimization problem

δ∗ = arg min
δ

1

N

N∑
i=1

Ju(Xi,M,Fi, δ, f,ypredi) , (5.5)

where Ju(·) is the objective function for a single image, as in the optimization prob-

lem (5.1), N is the number of training images, Xi is the i-th image with fooling mask

Fi, and the mask M is the global perturbation mask used for all images. In principle,

M can be obtained by sampling patches over all possible image locations. However, we

observed such a strategy to be unstable during learning. Hence, in our experiments, we

confine ourselves to one or a few fixed patch positions. Note that, to give the attacker

more flexibility, we take the universal attack defined in (5.5) to be an untargeted attack.

80

5.4. Experiments

5.3.4 Adversarial Attack Detection

To understand the strength of the attacks discussed above, we introduce a detection

method that can act either at the global image level or at the pixel level. In the former

case, we employ pix2pix [107] generator to resynthesise the input image. We then compare

the input image and resynthesised image in HOG feature space to detect the attack at

global level. The latter is particularly interesting in the case of indirect attacks, where

the perturbation regions and the fooled regions are different. In this case, our goal is to

localize the pixels that were fooled, which is more challenging than finding those that

were perturbed, since their intensity values were not altered. To this end, we use a score

based on the Mahalanobis distance defined on the intermediate feature representations.

This is because, as discussed in [142, 167] in the context of image classification, the

attacked samples can be better characterized in the representation space than in the

output label space.

Specifically, we use a set of training images to compute class-conditional Gaussian

distributions, with class-specific means µ`c and covariance Σ` shared across all C classes,

from the features extracted at every intermediate layer ` of the network within locations

corresponding to class label c. We then define a confidence score for each spatial location

j in layer ` as

C(X`
j) = max

c∈[1,C]
−
(
X`

j − µ`
c

)>
Σ`
−1

(
X`

j − µ`
c

)
, (5.6)

where X`
j denotes the feature vector at location j in layer `. We handle the different

spatial feature map sizes in different layers by resizing all of them to a fixed spatial

resolution. We then concatenate the confidence scores in all layers at every spatial

location and use the resulting L-dimensional vectors, with L being the number of layers,

as input to a logistic regression classifier with weights {α`}. We then train this classifier

to predict whether a pixel was fooled or not. At test time, we compute the prediction for

an image location j as
∑

` α`C(X`
j). To perform detection at the global image level, we

sum over the confidence scores of all spatial positions. That is, for layer `, we compute

an image-level score as C(X`) =
∑

j C(X`
j). We then train another logistic regression

classifier using these global confidence scores as input.

5.4 Experiments

In this section, we first explain our experimental setup, and then analyze the vulnerability

of state-of-the-art semantic segmentation networks to different types of attacks. Finally,

we evaluate our image-level and pixel-level detection strategies.

Datasets. In our experiments, we use the Cityscapes [40] and Pascal VOC [60] datasets,

the two most popular semantic segmentation benchmarks. Specifically, for Cityscapes,

we use the complete validation set, consisting of 500 images, for untargeted attacks, but

81

Chapter 5. Indirect Local Attacks

use a subset of 150 images containing dynamic object instances of vehicle classes whose

combined area covers at least 8% of the image for targeted attacks. This lets us focus

on fooling sufficiently large regions, because reporting results on too small one may not

be representative of the true behavior of our algorithms. For Pascal VOC, we use 250

randomly selected images from the validation set because of the limited resources we

have access to relative to the number of experiments we performed.

Models. We use publicly-available state-of-the-art models, namely FCN [163], DR-

Net [291], PSPNet [310], PSANet [311], DANet [71] on Cityscapes, and FCN [163] and

PSANet [311] on PASCAL VOC. FCN, PSANet, PSPNet and DANet share the same

ResNet [89] backbone network. We perform all experiments at the image resolution of

512× 1024 for Cityscapes and 512× 512 for PASCAL VOC. Since different models can

have different normalization strategies for the input image, we include normalization in

the network and pass the network an input image scaled to [0,1].

Adversarial attacks. We use the iterative projected gradient descent (PGD) method

with `∞ and `2 norm budgets, as described in Section 8.6. Following [8], we set the

number of iterations for PGD to a maximum of 100, with an early termination criterion

of 90% of attack success rate on the targeted objects. Given the dual objective of the

loss functions in (5.1) and (5.2), it may happen that the gradients to maximize the

confidence of labels at non-targeted locations dominate those at targeted ones. Hence,

as suggested in [92], we ignore the loss at locations where the label is predicted correctly

as the target label with a confidence of at least 0.3. We evaluate `∞ attacks with a step

size α ∈ {1e-5, 1e-4, 1e-3, 5e-3}. For `2 attacks, we set α ∈ {8e-3, 4e-2, 8e-2}. We set the

maximum `p-norm of the perturbation ε to 100 ·α for `∞ attacks, and to 100 for `2 attacks.

For universal attacks, we use a higher `∞ ε bound of 0.3, with a step size α = 0.001. We

perform two types of attacks; targeted and untargeted. The untargeted attacks focus on

fooling the network to move away from the predicted label. For the targeted attacks,

we chose a safety-sensitive goal, and thus aim to fool the dynamic object regions to be

misclassified as their (spatially) nearest background label. We do not use ground-truth

information in any of the experiments but perform attacks based on the predicted labels

only. Note that predicted segmentation maps are very accurate, with state-of-the-art

models reaching a pixel-wise accuracy > 95% on unattacked data. To be precise, we

found the percentage of perturbed pixels lying within the targeted region to be < 1% in

all cases. For example, in the adaptive attacks of Table 5.3, with S=75%, this percentage

is 0.2%, 0.16%, 0.12%, 0.14% for FCN, PSANet, PSPNet, DANet, respectively, which

shows that our attacks truly are indirect.

Evaluation metric. Following [8, 92, 284], we report the mean Intersection over Union

(mIoU) and Attack Success Rate (ASR) computed over the entire dataset. The mIoU of

FCN [163], DRNet [291], PSPNet [310], PSANet [311], and DANet [71] on clean samples

at full resolution are 0.66, 0.64, 0.73, 0.72, and 0.67, respectively. For targeted attacks,

we report the average ASRt, computed as the percentage of pixels that were predicted

82

5.4. Experiments

Network α = 0.00001 α = 0.0001 α = 0.001 α = 0.005

FCN [163] 0.64 / 5.0% 0.28 / 29% 0.13 / 55% 0.11 / 61%
PSPNet [310] 0.70 / 12% 0.05 / 85% 0.00 / 89% 0.00 / 90%
PSANet [311] 0.59 / 14% 0.03 / 85% 0.01 / 90% 0.00 / 90%
DANet [71] 0.80 / 5.0% 0.11 / 79% 0.01 / 90% 0.00 / 90%
DRN [291] 0.64 / 6.0% 0.15 / 56% 0.03 / 84% 0.02 / 86%

(a) `∞ attack

Network α = 0.008 α = 0.04 α = 0.08

FCN [163] 0.60 / 10% 0.56 / 26% 0.27 / 36%
PSPNet [310] 0.67 / 19% 0.23 / 67% 0.06 / 84%
PSANet [311] 0.59 / 14% 0.21 / 63% 0.06 / 82%
DANet [71] 0.79 / 11% 0.43 / 49% 0.13 / 79%
DRN [291] 0.63 / 10% 0.24 / 47% 0.13 / 64%

(b) `2 attack

Table 5.1 – Indirect attacks on Cityscapes to fool dynamic classes while perturbing
static ones. The numbers indicate mIoUu/ASRt, obtained using different step sizes α for
`∞ and `2 attacks. The most robust network in each case is underlined and the most
vulnerable models are highlighted in bold.

as the target label. We additionally report the mIoUu, which is computed between the

adversarial and normal sample predictions. For untargeted attacks, we report the ASRu,

computed as the percentage of pixels that were assigned to a different class than their

normal label prediction. Since, in most of our experiments, the fooling region is confined

to local objects, we compute the metrics only within the fooling mask. We observed that

the non-targeted regions retain their prediction label more than 98% of the time. To

evaluate detection, we report the Area under the Receiver Operating Characteristics

(AUROC), both at image level, as in [277], and at pixel level.

5.4.1 Indirect Local Attacks

Let us study the sensitivity of the networks to indirect local attacks. In this setting, we

first perform a targeted attack, formalized in (5.2), to fool the dynamic object areas by

allowing the attacker to perturb any region belonging to the static object classes. This

is achieved by setting the perturbation mask M to 1 at all the static class pixels and

the fooling mask F to 1 at all the dynamic class pixels. We report the mIoUu and ASRt

metrics in Tables 5.1a and 5.1b on Cityscapes for `∞ and `2 attacks, respectively. As

evidenced by the tables, FCN is more robust to such indirect attacks than the networks

that leverage contextual information. In particular, PSANet, which uses long range

contextual dependencies, and PSPNet are highly sensitive to these attacks.

To further understand the impact of indirect local attacks, we constrain the perturbation

region to a subset of the static class regions. To do this in a systematic manner, we

perturb the static class regions that are at least d pixels away from any dynamic object,

and vary the value d. The results of this experiment using `2 and `∞ attacks are provided

in Table 5.2. Here, we chose a step size α = 0.005 for `∞ and α = 0.08 for `2. Similar

conclusions to those in the previous non-local scenario can be drawn: Modern networks

that use larger receptive fields are extremely vulnerable to such perturbations, even when

they are far away from the targeted regions. By contrast, FCN is again more robust. For

example, as shown in Figure 5.2, while an adversarial attack occurring 100 pixels away

from the nearest dynamic object has a high success rate on the context-aware networks,

83

Chapter 5. Indirect Local Attacks

Network d = 0 d = 50 d = 100 d = 150

FCN [163] 0.11 / 64% 0.77 / 2.0% 0.98 / 0% 1.00 / 0.0%
PSPNet [310] 0.00 / 90% 0.14 / 73% 0.24 / 60% 0.55 / 23%
PSANet [311] 0.00 / 90% 0.11 / 71% 0.13 / 65% 0.29 / 47%
DANet [71] 0.00 / 90% 0.13 / 81% 0.48 / 43% 0.80 / 10%
DRN [291] 0.02 / 86% 0.38 / 22% 0.73 / 3% 0.94 / 1.0%

(a) `∞ attack

Network d = 0 d = 50 d = 100 d = 150

FCN [163] 0.27 / 36% 0.79 / 2.0% 0.98 / 2.0% 0.99 / 1.0%
PSPNet [310] 0.06 / 84% 0.18 / 73% 0.55 / 23% 0.99 / 0.0%
PSANet [311] 0.06 / 82% 0.10 / 75% 0.14 / 66 % 0.31 / 44%
DANet [71] 0.13 / 79% 0.27 / 71% 0.67 / 26% 0.85 / 7.0%
DRN [291] 0.13 / 64% 0.44 / 17% 0.76 / 3.0% 0.95 / 0.0%

(b) `2 attack

Table 5.2 – Impact of local attacks by perturbing pixels that are at least d pixels
away from any dynamic class. We report mIoUu/ASRt for different values of d.

(a) Adversarial (b) Perturbation (c) FCN [163]

(d) PSPNet [310] (e) PSANet [311] (f) DANet [71]

Figure 5.2 – Indirect Local attack on different networks with perturbations at least d = 100
pixels away from any dynamic class.

the FCN predictions remain accurate.

5.4.2 Adaptive Indirect Local Attacks

We now study the impact of our approach to adaptively finding the most sensitive

context region to fool the dynamic objects. To this end, we use the group sparsity

based optimization given in (5.4) and find the minimal perturbation region to fool

all dynamic objects to their nearest static label. Specifically, we achieve this in two

steps. First, we divide the perturbation mask M corresponding to all static class pixels

into uniform patches of size h × w, and find the most sensitive ones by solving (5.4)

with a relatively large group sparsity weight λ2 = 100 for Cityscapes and λ2 = 10 for

PASCAL VOC. Second, we limit the perturbation region by selecting the n patches that

have the largest values ‖Mt � δ‖2, choosing n so as to achieve a given sparsity level

S ∈ {75%, 85%, 90%, 95%}. Specifically, S is computed as the percentage of pixels that

are not perturbed relative to the initial perturbation mask. We then re-optimize (5.4)

with λ2 = 0. In both steps, we set λ1 = 0.01 and use the Adam optimizer [124] with a

learning rate of 0.01. For Cityscapes, we use patch dimensions h = 60, w = 120, and,

for PASCAL VOC, h = 60, w = 60. We clip the perturbation values below 0.005 to

0 at each iteration. This results in very local perturbation regions, active only in the

most sensitive areas, as shown for PSANet in Figure 5.3 on Cityscapes and in Figure 5.4

84

5.4. Experiments

for PASCAL VOC. As shown in Table 5.3, all context-aware networks are significantly

affected by such perturbations, even when they are confined to small background regions.

For instance, on Cityscapes, at a high sparsity level of 95%, PSANet yields an ASRt of

44% compared to 1% for FCN. This means that, in the physical world, an attacker could

add a small sticker at a static position to essentially make dynamic objects disappear

from the network’s view.

Network S = 75% S = 85% S = 90% S = 95%

FCN [163] 0.52 / 12% 0.66 / 6% 0.73 / 4% 0.84 / 1.0%
PSPNet [310] 0.19 / 70% 0.31 / 54% 0.41 / 42% 0.53 / 21%
PSANet [311] 0.10 / 78% 0.16 / 71% 0.20 / 64% 0.35 / 44%
DANet [71] 0.30 / 64% 0.52 / 43% 0.64 / 30% 0.71 / 21%
DRN [291] 0.42 / 23% 0.55 / 13% 0.63 / 9% 0.77 / 4.5%

(a) Cityscapes

Network S = 75% S = 85% S = 90% S = 95%

FCN [163] 0.80 / 12% 0.66 / 22% 0.59 / 27% 0.50 / 32%
PSANet [311] 0.30 / 69% 0.20 / 80% 0.21 / 77% 0.28 / 68%

(b) PASCAL VOC

Table 5.3 – Adaptive indirect local attacks on Cityscapes and PASCAL VOC. We
report mIoUu/ASRt for different sparsity levels S.

5.4.3 Universal Local Attacks

In this section, instead of considering image-dependent perturbations, we study the

existence of universal local perturbations and their impact on semantic segmentation

networks. In this setting, we perform untargeted local attacks by placing a fixed-size

patch at a predetermined position. While the patch location can in principle be sampled

at any location, we found learning its position to be unstable to due to the large number

of possible patch locations in the entire dataset. Hence, here, we consider the scenario

where the patch is located at the center of the image. We then learn a local perturbation

that can fool the entire dataset of images for a given network by optimizing the objective

given in (5.5). Specifically, the perturbation mask M is active only at the patch location

and the fooling mask F at all image positions, i.e., at both static and dynamic classes.

For Cityscapes, we learn the universal local perturbation using 100 images and use the

remaining 400 images for evaluation purposes. For PASCAL VOC, we perform training

on 100 images and evaluate on the remaining 150 images. We use `∞ optimization with

α = 0.001 for 200 epochs on the training set. We report the results of such universal

patch attacks in Tables 5.4a and 5.4b on Cityscapes and PASCAL VOC for different

patch sizes. As shown in the table, PSANet and PSPNet are vulnerable to such universal

attacks, even when only 2.3% of the image area is perturbed. From Figure 5.5, we can

see that the fooling region propagates to a large area far away from the perturbed one.

85

Chapter 5. Indirect Local Attacks

(a) Adversarial image (b) Perturbation (c) Normal Seg. (d) Adversarial Seg.

Figure 5.3 – Adaptive indirect local attacks on Cityscapes with PSANet [311].
An adversarial input image (a) when attacked at positions shown as red boxes with
a perturbation (b) is misclassified within the dynamic object areas of the normal
segmentation map (c) to result in (d).

(a) Adversarial image (b Perturbation (c) Normal seg. (d) Adversarial seg. (h) Adversarial seg.(g) Normal seg.(f) Perturbation(e) Adversarial image

Figure 5.4 – Adaptive indirect local attacks on PASCAL VOC with
PSANet [311]. An adversarial input image (a),(e) when attacked at positions shown
as red boxes with a perturbation (b),(f) is misclassified within the foreground object
areas of the normal segmentation map (c), (g) to result in (d), (h), respectively.

86

5.5. Attack Detection

(a) Adv. image (b) Ground Truth (c) FCN [163]

(d) PSANet [311] (e) PSPNet [310]

Figure 5.5 – Universal local attacks on Cityscapes and PASCAL VOC. In both datasets, the
degradation in FCN [163] is limited to the attacked area, whereas for context-aware networks,
such as PSPNet [310], PSANet [311], DANet [71], it extends to far away regions.

Network 51× 102(1.0%) 76× 157(2.3%) 102× 204(4.0%) 153× 306(9.0%)

FCN [163] 0.85 / 2.0% 0.78 / 4.0% 0.73 / 9.0% 0.58 / 18%
PSPNet [310] 0.79 / 3.0% 0.63 / 11% 0.44 / 27% 0.08 / 83%
PSANet [311] 0.41 / 37% 0.22 / 60% 0.14 / 70% 0.10 / 90%
DANet [71] 0.79 / 4.0% 0.71 / 10% 0.65 / 15% 0.40 / 42%
DRN [291] 0.82 / 3.0% 0.78 / 8.0% 0.71 / 14% 0.55 / 28%

(a) Cityscapes

Network 51× 51(1.0%) 76× 76(2.3%) 102× 102(4.0%) 153× 153(9.0%)

FCN [163] 0.70 / 6% 0.70 / 7% 0.63 / 10% 0.52 / 20%
PSANet [311] 0.83 / 4% 0.76 / 8 % 0.56 / 28% 0.35/ 56%

(b) PASCAL VOC

Table 5.4 – Universal local attacks. We show the impact of the patch size h×w (area%) on

different networks and report mIoUu/ASRu.

5.5 Attack Detection

We now turn to studying the effectiveness of the attack detection strategies described in

Section 5.3.4.

87

Chapter 5. Indirect Local Attacks

(a) Ground truth
map

(b) Input image
(normal)

(c) Predicted map
(normal)

(d) Resynthesized
(normal)

(e) Predicted map
(Shift)

(f) Resyn. image
(Shift)

(g) Predicted map
(Pure)

(h) Resyn. image
(Pure)

Figure 5.6 – Visualizing adversarial attacks. Without attacks, the resynthesized
image (d), obtained from (c), looks similar to the input one (b). By contrast, resynthe-
sized images ((f) and (h)) obtained from the semantic maps ((e) and (g)) computed
from an attacked input differ massively from the original one.

5.5.1 Image-Level Detecton

We now evaluate our approach to detecting attacks at image-level using the two types of

attack that have been used in the context of semantic segmentation.

Adversarial Attacks: For semantic segmentation, similar to [277], we use the two

state-of-the-art attack strategies namely Dense Adversary Generation (DAG) [284] and

Houdini [39]. While DAG is an iterative gradient-based method, Houdini combines the

standard task loss with an additional stochastic margin factor between the score of the

actual and predicted semantic maps to yield less perturbed images. Following [277], we

generate adversarial examples with two different target semantic maps. In the first case

(Shift), we shift the predicted label at each pixel by a constant offset and use the resulting

label as target. In the second case (Pure), a single random label is chosen as target for

all pixels, thus generating a pure semantic map. We generate adversarial samples on the

validation sets of the Cityscapes and BDD100K datasets, yielding 500 and 1000 images,

respectively, with every normal sample having an attacked counterpart.

Results: We compare our method with the state-of-the-art spatial consistency (SC) work

of [277], which crops random overlapping patches and computes the mean Intersection over

Union (mIoU) of the overlapping regions. The results of this comparison are provided

in Table 5.5. Ours (Syn) approach outperforms SC on Cityscapes and performs on par

with it on BDD100K despite our use of a Cityscapes-trained generator to resynthesize

the images. Note that, in contrast with SC, which requires comparing 50 pairs of patches

to detect the attack, our approach only requires a single forward pass through the

segmentation and generator networks. In Fig. 5.6, we show the resynthesized images

produced when using adversarial samples. Note that they massively differ from the input

one.

88

5.5. Attack Detection

Dataset Model Method
DAG [284] Houdini [39]

Pure Shift Pure Shift

Cityscapes
BSeg

SC [277] 99% 98% 100% 98%
Ours (Syn) 100% 100% 100% 98%

PSP
SC [277] 98% 90% 98% 100%

Ours (Syn) 100% 99% 99% 100%

BDD
BSeg

SC [277] 100% 100% 98% 100%
Ours (Syn) 98% 98% 100% 90%

PSP
SC [277] 92% 100% 96% 100%

Ours (Syn) 100% 96% 98% 95%

Table 5.5 – Attack detection on Cityscapes and BDD100K using image resyn-
thesis. Our resynthesis method achieves higher AUROC on Cityscapes than SC and
comparable ones on BDD100K, despite the fact that we rely on a generator trained on
Cityscapes.

5.5.2 Pixel-Level Detection

Networks
Perturbation Fooling `∞ / `2 Mis. Global AUROC Local AUROC

region region norm pixels % SC [277] / Ours(Syn) / Ours(G) Ours(L)

FCN [163]

Global Full 0.10 / 17.60 90% 1.00 / 1.00 / 0.94 0.90
UP Full 0.30 / 37.60 4% 0.71 / 0.63 / 1.00 0.94
FS Dyn 0.07 / 2.58 13% 0.57 / 0.71 / 1.00 0.87
AP Dyn 0.14 / 3.11 1.7% 0.51 / 0.65 / 0.87 0.89

PSPNet [310]

Global Full 0.06 / 10.74 83% 0.90 / 1.00 / 0.99 0.85
UP Full 0.30 / 38.43 11% 0.66 / 0.70 / 1.00 0.96
FS Dyn 0.03 / 1.78 14% 0.57 / 0.75 / 0.90 0.87
AP Dyn 0.11 / 5.25 11% 0.57 / 0.75 / 0.90 0.82

PSANet [311]

Global Full 0.05 / 8.26 92% 0.90 / 1.00 / 1.00 0.67
UP Full 0.30 / 38.6 60% 0.65 / 1.00 / 1.00 0.98
FS Dyn 0.02 / 1.14 12% 0.61 / 0.76 / 1.00 0.92
AP Dyn 0.10 / 5.10 10% 0.50 / 0.82 / 1.00 0.94

DANet [71]

Global Full 0.06 / 12.55 82% 0.89 / 1.00 / 1.00 0.68
UP Full 0.30 / 37.20 10% 0.67 / 0.63 / 0.92 0.89
FS Dyn 0.05 / 1.94 13% 0.57 / 0.69 / 0.94 0.88
AP Dyn 0.14 / 6.12 43% 0.59 / 0.68 / 0.98 0.82

Table 5.6 – Attack detection on Cityscapes with different perturbation settings.

While the above methods were designed to handle attacks that fool the entire label map,

unlike in our work where we aim to fool local regions. Furthermore, the earlier methods

perform detection at the image level, and thus do not localize the fooled regions at the

pixel level. We denote Ours (G) and Ours (L) to detect the global and pixel-level attack

using the Mahalanobis distance metric.

We study detection in four perturbation settings: Global image perturbations (Global)

to fool the entire image; Universal patch perturbations (UP) at a fixed location to fool the

entire image; Full static (FS) class perturbations to fool the dynamic classes; Adaptive

89

Chapter 5. Indirect Local Attacks

patch (AP) perturbations in the static class regions to fool the dynamic objects. As

shown in Table 5.6, while the state-of-the-art method [277] have high Global AUROC in

the first setting where the entire image is targeted, our detection strategy outperforms

them by a large margin in the other scenarios. We believe this to be due to the fact

that, with local attacks, the statistics obtained by studying the consistency across local

patches, as in [277], are much closer to the clean image statistics. Similarly, the image

re-synthesized by a pix2pix generator using the image-level method will look much more

similar to the input one in the presence of local attacks instead of global ones. For all the

perturbation settings, we also report the mean percentage of pixels misclassified relative

to the number of pixels in the image.

5.5.3 Implementation Details

In this section, we provide detailed explanations about the experiments described in

Section 4 of the main chapter.

Models. All models for the experiments were implemented in PyTorch [205]. To generate

adversarial attacks, we use the advertorch [49] library. Since different networks may

have different normalization values for the mean and standard deviation of the input,

we model normalization as a first layer inside the network and pass it as input an RGB

image scaled to the range [0,1].

FCN. We use the publicly released model1 from the authors of [311], which is trained

together with PSANet [311] with an additional auxiliary loss. We use the ResNet-50

version for our experiments.

PSPNet. We use the trained modelpsalink released by the authors of [311]. It uses

the same ResNet-50 as backbone network. The pyramid pooling module is a 4-level

pyramid, which is concatenated to the final convolutional spatial map and later fed to a

classification layer.

PSANet. We experiment with the trained modelpsalink provided by authors of [311]

with ResNet-50 as backbone network. The PSA layer contains two sub-branches, namely

collect and distribute, that favor a bi-directional information flow from each position to

all other positions in the spatial feature map.

DANet. We use the trained model2 from the authors of DANet [71]. DANet uses

ResNet-101 as backbone network followed by a spatial and channel wise attention module.

We use DANet with a hierarchy of grids of different sizes (4,8,16) in the last layer of each

ResNet block.

1https://github.com/hszhao/semseg
2https://github.com/junfu1115/DANet

90

https://github.com/hszhao/semseg
https://github.com/junfu1115/DANet

5.5. Attack Detection

Dynamic class Images

Person 115
Rider 66
Car 150
Truck 33
Bus 23
Train 7
Motorcycle 24
Bicycle 88

Table 5.7 – Cityscapes-sampled dataset. We provide the statistics of the 150 images
whose combined instance area of vehicle categories is more than 8%.

DRN. We use the trained model3 released by authors of [291]. We choose ResNet-22 as

backbone network with dilated version corresponding to type D.

U-Net. Along with the above-mentioned models, we evaluate the robustness of the U-Net

architecture to local attacks. Due to the non-availability of a trained PyTorch [205] version

of the U-Net model, we re-trained it ourselves, achieving 33.7% mIoU on Cityscapes.

Along with the six Cityscapes models discussed above, we experiment on PASCAL

VOC [60] with trained FCN [163]psalink and PSANet [311]psalink models provided by

the authors of [311].

Datasets

Cityscapes: We use the validation set of the Cityscapes [40] dataset consisting of 500

images from 19 classes. We divide the pixels at every position in the image into one of

two sets, based on the category attribute provided by the authors. The first set consists

of pixels belonging to static classes with category attribute road, sidewalk, building, wall,

fence, pole, traffic light, traffic sign, vegetation, terrain, sky. The second set corresponds

to regions of dynamic classes person, rider, car, truck, bus, train, motorcycle, bicycle.

The Cityscapes dataset has on average 8% of the pixels corresponding to dynamic classes

in each image. Since our study was targeted to mis-classify the dynamic objects, images

with dynamic instances that occupy small regions might not be meaningful as such regions

lie in the immediate receptive field of their surroundings. Therefore, we take a subset

of images consisting of 150 images whose combined region of instances corresponding

to vehicle classes (car, truck, bus, train, motorcycle, bicycle) is greater than 8%. We

provide the statistics of the resulting dataset in Table 5.7.

While the original Cityscapes dataset was captured at 2048 × 1024 resolution, we resize

3https://github.com/fyu/drn

91

https://github.com/fyu/drn

Chapter 5. Indirect Local Attacks

the images to the half resolution of 1024 × 512 as the original size is too large to fit into

GPU memory. Furthermore, we crop the bottom region of the image corresponding to

the ego-vehicle of height 62 pixels and resize the image back to 1024 × 512 pixels. For

fair comparison, all models use the same 1024 × 512 resolution as input to the network

without any tiling.

PASCAL VOC: We use a subset of 250 images from the original validation set consisting

of 1449 images. It contains 20 foreground classes and one background class. In all settings,

we target the pixels corresponding to all 20 foreground classes by perturbing a subset of

the background area.

Attack Algorithms

We solve the indirect attacks given in Sections 3.1 and 3.2 of the main chapter using the

efficient iterative projected gradient descent algorithm [168] with an `p-norm perturbation

budget ‖M� δ‖p < ε, where p ∈ {2,∞}, using a step size α. In all our experiments, we

set the maximum perturbation ε as 100 times α for `∞ attacks. For `2 attacks, we set

the maximum `2 norm of the perturbation ε to 100.

Formally, given an input image X, the adversarial attack minimizes the objective function,
Jt(X,M,F, δ, f,ypred,yt) to find the optimal δ. We solve for δ in an iterative manner as

δ(0) = 0 (5.7)

δ(n+1) = Clippε

{
δ(n) − α∇XJt(X,M,F, δ, f,ypred,yt)

}
, (5.8)

where Clippε clips the perturbation within the `p ball of radius ε. For `∞-norm based
attacks, the gradient update is given by

∇XJ = (∇X(Jt(X,M,F, δ, f,ypred,yt))), (5.9)

where is the sign function.

For `2-norm based attacks, the gradient update is given by

r = ∇X(Jt(X,M,F, δ, f,ypred,yt)) (5.10)

∇XJ =
r

‖r‖2
. (5.11)

We observe that the DAG attack [284] is similar to the PGD-`2 attack. While DAG

projects the gradient as r
‖r‖∞ , PGD-`2 projects the gradient as r

‖r‖2 . We emphasize that

our formalism for local indirect attacks is general and could be applied to other adversary

generation techniques [26, 284].

92

5.5. Attack Detection

Attack Detection Algorithms

State-of-the-art methods. In this chapter, we compare our approach with the spatial

consistency [277] method for adversarial attack detection at image level. Following [277],

given an input image of 1024× 512 pixels, we crop 50 sufficiently overlapping pairs of

patches of size 256× 256 and compute the average mIoU of the overlapped patch regions

as the confidence score for attack detection.

Our method. Let us now provide the implementation details of our attack detection

based on the Mahalanobis distance. During training, we compute the class-conditional

mean µ`c at every layer ` of the network within locations corresponding to class label c of

the ground truth. Furthermore, we compute the group variance Σ` for every layer ` of the

network using the features extracted at layer `. Since the number of features extracted

from the training set can be high, we propose to compute the mean and variance of

averaged features within locations corresponding to each label.

Formally, let X`
j be the feature extracted at layer ` at position j for image X. Let the

size of the feature map X` be W` × H` × K`, where W`, H`, K` are the width, height

and number of channels for layer `. Let Lc ∈ RW`×H` be the label mask activated at

positions where the label is c, i.e., Lcj = 1 if the j-th pixel location belongs to label c and

Lcj = 0 otherwise.

First, we compute the averaged feature corresponding to label c given by X̂`
c =

∑
j|Lj=1 X`

j .

We then learn µ`c and Σ` using {X̂`
c|X ∈ [X0, ...,XN]} extracted from all N images in

the training set. In the end, we obtain µ`c ∈ RK` and Σ` ∈ RK`×K` for a layer ` in the

network, and use these values to compute the confidence score of Eq.(6)

We extract features at the end of every block in the ResNet backbone followed by a

context layer and a classification layer. By doing so, we obtain a feature vector for the

logistic detector of size L = 6 for FCN; L = 7 for PSANet; L = 7 for PSPNet; L = 5 for

DANet; L = 5 for DRN. For evaluation purpose, we use 80% of the data for training and

the remaining 20% for testing.

Performance Metrics

For evaluation, we use the following metrics to measure the effectiveness of our indirect

local attacks. Intersection over Union. We report the mIoU used in the domain of

segmentation to evaluate the effectiveness of the attack. We report the mIoU at positions

that we aim to fool (f) since at the remaining positions, the label is retained around 98%

of the time. For untargeted attacks, we report mIoUf
u as the mIoU calculated between

the normal image prediction and its counterpart adversarial image prediction at fooling

positions. In the case of targeted attacks, along with mIoUf
u, we report mIoUf

t as the

mIoU calculated between the normal image prediction and targeted label map at fooling

93

Chapter 5. Indirect Local Attacks

positions.

Attack Success Rate. We report the attack success rate at the percentage of pixels

mis-classified/preserved relative to the total number of pixels in the fooling/preserved

positions, respectively. We report the mASR separately at two positions: 1) at positions

that we aim to fool (f); 2) at the remaining positions where the label should be preserved

(p). We report mASRf
u and mASRp

u as the success rates calculated between the normal

prediction and its adversarial image prediction at the fooling and preserved positions,

respectively, for untargeted attacks. Specifically to calculate mASRf
u, we assume the

attack to be successful at a pixel if it misclassifies it to any label other than the normal

predicted label. In the case of targeted attacks, we additionally report mASRf
t as the

success rates calculated between the normal prediction and targeted label map at fooling

positions.

Perceptibility. We take the `∞-norm and `2-norm of the perturbation image as the

two perceptibility scores.

We average the above metrics over the entire test set. Since in almost all experiments

the labels are retained around 98% of the time at preserved positions, we omitted

reporting mASRp
u in the main chapter. We reported only mASRf

t and mIoUf
u at the

fooling positions in the main chapter as these metrics values are the most diverse in our

different attack settings.

AUROC. The area under the receiver operating characteristic curve (AUROC) is

computed by plotting the true positive rate (TPR) against the false positive rate (FPR)

by varying a threshold. We compute the AUROC both at image level and pixel level and

report them in all perturbation settings.

Time Complexity

For an input image of size 512×1024, the PGD-based indirect attack of Eq. (2) in the

main chapter takes on average ∼ 35 seconds for 100 iterations, whereas our group-sparsity-

based attack in Eq. (4) of the main chapter takes on average ∼ 90 seconds when using a

maximum of 400 gradient computations. For comparison, a dense adversary generation

attack [284], consisting of projecting the gradient in each iteration, takes ∼ 40 seconds

for a maximum of 200 iterations. Importantly, these timings remain practical in the

scenario of physical attacks where the perturbation can be computed offline.

94

5.6. Additional Results

5.6 Additional Results

Cityscapes Experiments

Table 5.8 show the performance of different networks by varying the noise levels for `∞
attacks. Table 5.9 show the impact of indirect attacks by perturbing static regions that

are at least d pixels away from any dynamic object class with `∞ attacks. Furthermore,

Table 5.10 shows the complete performance statistics of different networks by tuning the

sparsity levels in our adaptive attack strategy. We then show the impact of universal,

single fixed-size patch attacks in Table 5.11 by varying the size of the patch placed at

the center of the image.

Finally, we show the attack detection results with four perturbation settings: Global

image perturbations (Global) to fool the entire image; Universal patch perturbations

(UP) at a fixed location to fool the entire image; Full static (FS) class perturbations to

fool the dynamic classes; Adaptive patch (AP) perturbations in the static class regions

to fool the dynamic objects.

Qualitative Results on Cityscapes

Figure 5.7 shows the outputs of indirect local attacks by perturbing static class pix-

els that are at least a distance d from a dynamic class pixel. Figure 5.8 shows the

outputs of universal patch attacks on different networks by varying the patch area in

{1%, 2.3%, 4%, 9%} of the image area. Figure 5.9 shows the results of adaptive local

attacks on different networks by varying the sparsity level of the perturbation. Finally,

Figure 5.10 shows the resynthesised images for normal and attacked images.

95

Chapter 5. Indirect Local Attacks

Networks α
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [163]

1e-5 0.65 0.08 100% 6% 5% 0.001 0.83
1e-4 0.29 0.27 100% 35% 29% 0.01 4.70
1e-3 0.14 0.49 100% 63% 56% 0.10 15.12
5e-3 0.11 0.55 100% 69% 62% 0.40 50.93

PSPNet [310]

1e-5 0.71 0.10 99% 15% 12% 0.001 0.77
1e-4 0.06 0.53 100% 98% 86% 0.01 3.10
1e-3 0.00 0.62 100% 100% 90% 0.05 8.30
5e-3 0.00 0.63 99% 100% 90% 0.20 37.99

PSANet [311]

1e-5 0.60 0.10 98% 22% 14% 0.001 0.72
1e-4 0.04 0.51 99% 99% 86% 0.01 2.68
1e-3 0.01 0.60 99% 100% 90% 0.05 8.10
5e-3 0.00 0.60 99% 100% 90% 0.18 35.71

DANet [71]

1e-5 0.80 0.06 100% 6% 5% 0.001 0.81
1e-4 0.11 0.50 99% 91% 80% 0.01 3.90
1e-3 0.01 0.65 99% 99% 90% 0.04 8.30
5e-3 0.00 0.66 99% 100% 90% 0.15 31.71

DRNet [291]

1e-5 0.64 0.09 99% 9% 6% 0.001 0.87
1e-4 0.15 0.44 99% 67% 56% 0.01 4.95
1e-3 0.03 0.67 99% 92% 84% 0.08 12.78
5e-3 0.02 0.67 99% 94% 87% 0.27 40.2

U-Net [224]

1e-5 0.35 0.15 99% 29% 20% 0.001 0.91
1e-4 0.02 0.37 99% 95% 76% 0.01 5.74
1e-3 0.00 0.48 99% 99% 87% 0.08 13.34
5e-3 0.00 0.52 99% 100% 89% 0.28 38.89

Table 5.8 – Indirect attacks on Cityscapes to fool dynamic classes while perturbing
entire static ones with `∞ strategy. The success rate of the attacks increases with higher
step size α although with higher perceptibility values. FCN is more robust to indirect
attacks, while PSANet and PSPNet are more vulnerable to attacks even at small step
sizes such as α = 1e-4.

96

5.6. Additional Results

Networks d
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [163]

50 0.77 0.05 100% 4% 3% 0.38 43.37
100 0.98 0.00 100% 0% 0% 0.38 33.46
150 1.00 0.00 100% 0% 0% 0.38 22.23

PSPNet [310]

50 0.14 0.37 99% 96% 74% 0.28 41.83
100 0.24 0.26 98% 86% 60% 0.29 33.00
150 0.55 0.12 97% 35% 23% 0.34 22.86

PSANet [311]

50 0.11 0.33 98% 98% 72% 0.25 42.11
100 0.13 0.27 98% 97% 65% 0.25 33.00
150 0.28 0.21 98% 75% 47% 0.30 22.47

DANet [71]

50 0.14 0.50 99% 92% 81% 0.29 41.17
100 0.48 0.24 98% 53% 43% 0.33 34.50
150 0.80 0.07 98% 14% 10% 0.35 23.45

DRNet [291]

50 0.37 0.20 99% 34% 22% 0.43 46.30
100 0.73 0.05 99% 5% 3% 0.44 37.24
150 0.94 0.00 100% 0% 0% 0.47 25.87

U-Net [224]

50 0.01 0.25 98% 97% 70% 0.43 44.62
100 0.03 0.20 96% 90% 60% 0.47% 39.61
150 0.10 0.17 95% 74% 47% 0.49% 33.27

Table 5.9 – Impact of local attacks by perturbing pixels that are at least d pixels away from

any dynamic class with `∞ strategy. We observe PSANet [311] and UNet [224] to be vulnerable

to indirect attacks even when the perturbations are at large distances, such as d = 150, while

FCN [163] is barely affected.

Networks Sparsity
mIoU mASR Norm of δ

mIoUf
u mIoUf

t mASRp
u mASRf

u mASRf
t `∞-norm `2-norm

FCN [163]

75% 0.52 0.12 100% 18% 13% 0.15 4.04
85% 0.67 0.07 100% 9% 6% 0.14 3.11
90% 0.73 0.05 100% 6% 4% 0.12 2.54
95% 0.84 0.03 100% 2% 2% 0.10 1.78

PSPNet [310]

75% 0.19 0.38 99% 89% 71% 0.09 4.87
85% 0.32 0.28 98% 74% 55% 0.11 5.25
90% 0.42 0.21 98% 60% 42% 0.13 5.30
95% 0.60 0.11 98% 33% 22% 0.15 4.85

PSANet [311]

75% 0.10 0.44 99% 97% 79% 0.09 4.76
85% 0.16 0.38 98% 94% 71% 0.10 5.20
90% 0.20 0.32 98% 89% 64% 0.12 5.19
95% 0.36 0.22 98% 70% 44% 0.14 5.07

DANet [71]

75% 0.30 0.37 99% 78% 65% 0.12 5.63
85% 0.49 0.23 99% 57% 46% 0.14 5.79
90% 0.64 0.16 99% 40% 30% 0.15 5.80
95% 0.71 0.12 99% 29% 21% 0.13 3.95

DRNet [291]

75% 0.42 0.19 100% 35% 22% 0.18 5.40
85% 0.55 0.11 100% 22% 13% 0.15 4.43
90% 0.63 0.08 100% 15% 10% 0.14 3.84
95% 0.77 0.05 100% 8% 5% 0.13 2.81

U-Net [224]

75% 0.12 0.20 96% 70% 44% 0.15 6.56
85% 0.19 0.15 96% 52% 32% 0.19 6.81
90% 0.25 0.13 96% 42% 25% 0.22 6.54
95% 0.36 0.11 96% 27% 16% 0.23 5.73

Table 5.10 – Adaptive indirect local attacks on Cityscapes. We compute the performance

statistics for different sparsity levels of perturbation. By enforcing group sparsity, we can attack

context-aware networks such as PSANet [311], PSPNet [310] and DANet [71] with higher success

rates than for the baseline FCN [163].

97

Chapter 5. Indirect Local Attacks

Networks
Patch size

h×w (area%)
mIoU mASR Norm of δ

mIoUf
u mASRf

u `∞-norm `2-norm

FCN [163]

51× 102 (1.0%) 0.86 2% 0.30 25.36
76× 157 (2.3%) 0.78 4% 0.30 37.60
102× 204 (4.0%) 0.73 10% 0.30 51.80
153× 306 (9.0%) 0.58 18% 0.30 78.32

PSPNet [310]

51× 102 (1.0%) 0.80 3% 0.30 25.52
76× 157 (2.3%) 0.63 10% 0.30 38.43
102× 204 (4.0%) 0.44 27% 0.30 50.32
153× 306 (9.0%) 0.09 84% 0.30 74.92

PSANet [311]

51× 102 (1.0%) 0.41 38% 0.30 26.69
76× 157 (2.3%) 0.23 60% 0.30 38.60
102× 204 (4.0%) 0.14 71% 0.30 50.39
153× 306 (9.0%) 0.04 90% 0.30 78.02

DANet [71]

51× 102 (1.0%) 0.79 4% 0.30 26.45
76× 157 (2.3%) 0.71 10% 0.30 37.24
102× 204 (4.0%) 0.65 15% 0.30 49.86
153× 306 (9.0%) 0.40 42% 0.30 74.60

DRNet [291]

51× 102 (1.0%) 0.82 2% 0.30 26.28
76× 157 (2.3%) 0.77 7% 0.30 39.27
102× 204 (4.0%) 0.70 14% 0.30 52.23
153× 306 (9.0%) 0.55 28% 0.30 78.32

U-Net [224]

51× 102 (1.0%) 0.32 26% 0.30 29.95
76× 157 (2.3%) 0.13 58% 0.30 44.42
102× 204 (4.0%) 0.06 76% 0.30 58.15
153× 306 (9.0%) 0.02 90% 0.30 86.06

Table 5.11 – Universal local attacks on Cityscapes by tuning the patch size h×w (area%) on

different networks. PSANet [311] and UNet [224] are highly sensitive to patch attacks even when

the patch is 1% of image area. Note that the attack is untargeted and aimed to fool the entire

scene by placing a fixed-size patch at the center of the image. We use `∞ based attacks with

α = 0.001 and ε = 0.3.

98

5.6. Additional Results

Normal image Ground Truth

d = 0 d = 50 d = 100 d =150

F
C

N
P

S
P

P
S

A
D

A
N

et

Figure 5.7 – Indirect local attack on different networks with perturbations at least d
pixels away from any dynamic class. In most cases, FCN [163] is not affected by indirect
attacks, while PSANet [311], PSPNet [310] and DANet [71] are affected due to their
larger contextual dependencies for prediction.

99

Chapter 5. Indirect Local Attacks

Normal image Prediction

51x102 76x153 102x204 153x306

P
S

A
F

C
N

P
S

P
D

A
N

et

Figure 5.8 – Universal local attacks on segmentation networks. The degradation in
FCN [163] is limited to the attacked area, whereas for context-aware networks, such as
PSPNet [310], PSANet [311], DANet [71], it extends to far-away regions.

100

5.6. Additional Results

Normal image Ground Truth

S = 75% S = 85% S = 90% S = 95%

F
C

N
P

S
P

P
S

A

Figure 5.9 – Adaptive indirect local attacks on Cityscapes with different net-
works by tuning the sparsity levels. We observe that PSPNet [310] and PSANet [311]
are vulnerable to adaptive indirect local attacks even with perturbations with high levels
of sparsity, while FCN [163] is the least affected.

101

Chapter 5. Indirect Local Attacks

(a) Input image
(normal)

(b) Predicted map
(normal)

(c) Predicted map
(Shift)

(d) Resynthesized
image (normal)

(e) Resynthesized
image (Shift)

Figure 5.10 – Detecting adversarial attacks on Cityscapes with image resynthe-
sis approach. Without attack, the re-synthesized image (d) obtained from (b) looks
similar to it. By contrast, the resynthesized image (e) obtained from the semantic maps
(c) computed from a Houdini-compromised input differs massively from the original one.

102

5.7. Conclusion

5.7 Conclusion

In this chapter, we have studied the impact of indirect local image perturbations on the

performance of modern semantic segmentation networks. We have observed that the

state-of-the-art segmentation networks, such as PSANet and PSPNet, are more vulnerable

to local perturbations because their use of context, which improves their accuracy on

clean images, enables the perturbations to be propagated to distant image regions. As

such, they can be attacked by perturbations that cover as little as 2.3% of the image area.

We have then proposed image resynthesis-based detection and Mahalanobis distance-

based detection strategy, which has proven effective for both image-level and pixel-level

attack detection. In the following chapter, we continue the trend of understanding the

limitations of DNNs by designing an efficient attack on the task of visual object tracking.

103

6 Universal, Transferable Adver-

sarial Perturbations for Visual

Object Trackers

In recent years, Siamese networks have led to great progress in visual object tracking.

While these methods were shown to be vulnerable to adversarial attacks, the existing

attack strategies do not truly pose great practical threats. They either are too expensive

to be performed online, require computing image-dependent perturbations, lead to

unrealistic trajectories, or suffer from weak transferability to other black-box trackers.

In this chapter, we address the above limitations by showing the existence of a universal

perturbation that is image agnostic and fools black-box trackers at virtually no cost

of perturbation. Furthermore, we show that our framework can be extended to the

challenging targeted attack setting that forces the tracker to follow any given trajectory

by using diverse directional universal perturbations. At the core of our framework,

we propose to learn to generate a single perturbation from the object template only,

that can be added to every search image and still successfully fool the tracker for the

entire video. As a consequence, the resulting generator outputs perturbations that are

quasi-independent of the template, thereby making them universal perturbations. Our

extensive experiments on four benchmarks datasets, i.e., OTB100, VOT2019, UAV123,

and LaSOT, demonstrate that our universal transferable perturbations (computed on

SiamRPN++) are highly effective when transferred to other state-of-the-art trackers,

such as SiamBAN, SiamCAR, DiMP, and Ocean online.

6.1 Introduction

Visual Object Tracking (VOT) [143] is a key component of many vision-based systems,

such as surveillance and autonomous driving ones. Studying the robustness of object

trackers is therefore critical from a safety point of view. When using deep learning,

as most modern tackers do, one particular security criterion is the robustness of the

deep network to adversarial attacks, that is, small perturbations aiming to fool the

prediction of the model. In recent years, the study of such adversarial attacks has become

105

Chapter 6. Universal, Transferable Adversarial Perturbations

Figure 6.1 – Universal directional pertubations. Our approach learns an effective
universal directional perturbation to attack a black-box tracker throughout the entire
sequence by forcing it to follow a predefined motion, such as a fixed direction as illustrated
above, or a more complicated trajectory, as shown in our experiments. The green box
denotes the ground truth, the yellow box the output bounding box under attack, the red
arrow the desired target direction.

an increasingly popular topic, extending from image classification [79, 138] to more

challenging tasks, such as object detection [284] and segmentation [8, 69].

VOT is no exception to this rule, and several works [31, 84, 113, 152, 287] have designed

attacks to fool the popular Siamese-based trackers [14, 144, 145, 262]. Among these, while

the attacks in [31, 84, 113] are either too time-consuming or designed to work on entire

videos, thus not applicable to fool a tracker in real-time and in an online fashion, the

strategies of [152, 287] leverage generative methods [212, 278] to synthesize perturbations

in real-time, and can thus effectively attack in an efficient manner. Despite promising

results, we observed these generative strategies to suffer from three main drawbacks: (i)

They require computing a search-image-dependent perturbation for each frame, which

reduces the running speed of the real-time trackers by up to 40 fps, making them

ineffective for practical applications such as surveillance and autonomous driving; (ii)

They assume the availability of white-box trackers and yield attacks that generalize poorly

when transferred to unseen, black-box trackers; (iii) They largely focus on untargeted

attacks, whose goal is to make the tracker output any, unspecified, incorrect object

location, which can easily be detected because the resulting tracks will typically not be

consistent with the environment.

In this chapter, we argue that learning to generate online attacks with high transferability is

essential for posing practical threats to trackers and accessing their robustness. Therefore,

we propose to learn a transferable universal perturbation, i.e., a single pre-computed

perturbation that can be employed to attack any given video sequence on-the-fly and

106

6.1. Introduction

generalizes to unseen black-box trackers. To achieve this, we introduce a simple yet

effective framework that learns to generate a single, one-shot perturbation that is

transferable across all the frames of the input video sequence. Unlike existing works [152,

287] that compute search-image-dependent perturbations for every search image in the

video, we instead synthesize a single perturbation from the template only and add this

perturbation to every subsequent search image. As a consequence of adding the same

perturbation to each search image, thus remaining invariant to the search environment,

the resulting framework inherently learns to generate powerful transferable perturbations

capable of fooling not only every search image in the given video but also other videos

and other black-box trackers. In other words, our frameworks learns to generate universal

perturbations that are quasi-independent of the input template and of the tracker used

to train the generator.

Moreover, in contrast to previous techniques, our approach naturally extends to per-

forming targeted attacks so as to steer the tracker to follow any specified trajectory in

a controlled fashion. To this end, we condition our generator on the targeted direction

and train the resulting conditional generator to produce perturbations that correspond

to arbitrary, diverse input directions. Therefore, at test time, we can then pre-compute

directional universal perturbations for a small number of diverse directions, e.g., 12 in our

experiments, and apply them in turn so as to generate the desired complex trajectory. We

illustrate this in Fig. 6.1, where a single precomputed universal directional perturbation

can steer the black-box tracker to move along a given direction for the entire video

sequence and will show more complex arbitrary trajectories in our experiments. We will

make our code publicly available upon acceptance.

Overall, our contributions can be summarized as follows:

• We introduce a transferable attack strategy to fool unseen Siamese-based trackers

by generating a single universal perturbation. This is the first work that shows the

existence of universal perturbations in VOT.

• Our attacking approach does not compromise the operating speed of the tracker

and adds no additional computational burden.

• Our framework naturally extends to performing controllable targeted attacks,

allowing us to steer the tracker to follow complex, erroneous trajectories. In

practice, this would let one generate plausible incorrect tracks, making it harder to

detect the attack.

We demonstrate the benefits of our approach on 4 public benchmark datasets, i.e.,

OTB100, VOT2018, UAV123 and LaSOT, and its transferability using several state-of-

the-art trackers, such as SiamBAN, SiamCAR, DiMP, and Ocean online.

107

Chapter 6. Universal, Transferable Adversarial Perturbations

6.2 Related Work

Visual Object Tracking. VOT aims to estimate the position of a template cropped

from the first frame of a video in each of the subsequent frames. Unlike most other visual

recognition tasks, e.g., image classification or object detection, that rely on predefined

categories, VOT seeks to generalize to any target object at inference time. As such,

early works mainly focused on measuring the correlation between the template and the

search image [19], extended to exploiting multi-channel information [121] and spatial

constraints [45, 122].

Nowadays, VOT is commonly addressed by end-to-end learning strategies. In particular,

Siamese network-based trackers [14, 144, 145, 262, 318] have grown in popularity because

of their good speed-accuracy tradeoff and generalization ability. The progress in this field

includes the design of a cross-correlation layer to compare template and search image

features [14], the use of a region proposal network (RPN) [219] to reduce the number of

correlation operations [14], the introduction of an effective sampling strategy to account

for the training data imbalance [318], the use of multi-level feature aggregation and of a

spatially-aware sample strategy to better exploit deeper ResNet backbones [144], and the

incorporation of a segmentation training objective to improve the tracking accuracy [262].

In our experiments, we will focus on SiamRPN++ [144] as a white box model and study

the transferability of our generated adversarial attacks to other modern representative

trackers, namely SiamBAN [33], SiamCAR [83], DiMP [15] and Ocean-online [308].

Adversarial Attacks. Inspired by the progress of advesarial attacks in image classifi-

cation [26, 52, 79, 138, 168, 182], iterative adversarial attacks have been first studied in

the context of VOT. In particular, SPARK [84] computes incremental perturbations by

using information from the past frames; [31] exploits the full video sequence to attack the

template by solving an optimization problem relying on a dual attention loss. Recently,

[112] proposed a decision-based black-box attack based on IoU overlap between the

original and perturbed frames. While effective, most of the above-mentioned attacks are

time-consuming, because of their use of heavy gradient computations or iterative schemes.

As such, they are ill-suited to attack an online visual tracking system in real time. [270]

also relies on a gradient-based scheme to generate a physical poster that will fool a

tracker. While the attack is real-time, it requires to physically alter the environment.

As an efficient alternative to iterative attacks, AdvGAN [278] proposed to train a generator

that synthesizes perturbations in a single forward pass. Such generative perturbations

were extended to VOT in [152, 287]. For these perturbations to be effective, however,

both [287] and [152] proposed to attack every individual search image, by passing it

through the generator. To be precise, while [287] studied the problem of attacking the

template only the success of the resulting attacks was shown to be significantly lower than

that of perturbing each search image. Doing so, however, degrades the tracker running

108

6.3. Methodology

speed by up to 40 fps and generalizes poorly to unseen object environments. Here,

instead, we show the existence of universal transferable perturbations, which are trained

using a temporally-transferable attack strategy, yet effectively fool black-box VOT in

every search image; the core success of our approach lies in the fact that the perturbation

is generated from the template, agnostic to the search images but shared across all frames.

This forces the generator to learn powerful transferable perturbation patterns by using

minimal but key template information. Furthermore, our approach can be extended

to producing targeted attacks by conditioning the generator on desired directions. In

contrast to [152], which only briefly studied targeted attacks in the restricted scenario of

one specific pre-defined trajectory, our approach allows us to create arbitrary, complex

trajectories at test time, by parametrizing them in terms of successive universal targeted

perturbations.

6.3 Methodology

Problem Definition. Let X = {Xi}T1 denote the frames of a video sequence of length

T , and z be the template cropped from the first frame of the video, and F(·) be the

black-box tracker that aims to locate the template z in search regions extracted from the

subsequent video frames. In this work, we aim to find a universal perturbation δ that,

when added to any search region Si to obtain an adversarial image S̃i = Si + δ, leads to

an incorrect target localization in frame i . Note that, unlike universal attacks on image

classification [184] that aim to fool a fixed number of predefined object categories, in

VOT the objects at training and testing times are non-overlapping.

6.3.1 Overall Pipeline

Figure 6.2 illustrates the overall architecture of our training framework, which consists

of two main modules: a generator G and a siamese-based white-box tracker Fw. To

produce highly transferable perturbations, we propose a simple yet effective learning

framework. We first train our perturbation generator to synthesize a single perturbation

δ from the template, and add this perturbation to every subsequent search image. As

a result of adding the same perturbation, our model learns a temporally-transferable δ

that can successfully attack every search image. This makes the learned δ independent

of the search image, which further helps generalization to unseen object environments.

In other words, by removing the dependence on the search region and relying only on

the object template, our generator learns a universal adversarial function that disrupts

object-specific features and outputs a perturbation pattern that is quasi-agnostic to the

template. Thus, during the attack stage, we precompute a universal perturbation δu
from any arbitrary input template and perturb the search region of any video sequence,

resulting in an incorrect predicted location. Overall, our attack strategy is highly efficient

and flexible, and enjoys superior transferability. Below, we introduce our loss functions

109

Chapter 6. Universal, Transferable Adversarial Perturbations

Figure 6.2 – Our temporally-transferable attack framework. Given the template,
we generate a single temporally-transferable perturbation and add it to the search region
of any subsequent frame to deviate the tracker.

in detail and then extend our framework to learning universal targeted perturbations.

6.3.2 Training the Generator

To train the generator, we extract a template z from the first frame of a given video

sequence and feed it to the generator to obtain a unbounded perturbation δ̂ = G(z) which

is clipped to be within `∞ budget to obtain the bounded perturbation δ. We then crop

N search regions from the subsequent video frames using ground-truth information, and

add δ to each such regions to obtain adversarial search regions S̃ = {S̃i}N1 . Finally, we

feed the clean template z and each adversarial search region S̃i to the tracker to produces

an adversarial classification map H̃i ∈ RH×W×K and regression map R̃i ∈ RH×W×4K .

Standard Loss. Our goal is to obtain the adversarial classification H̃i and regression

maps R̃i so as to fool the tracker, i.e., result in erroneously locating the target. To

this end, we compute the classification map Hi ∈ RH×W×K for the unperturbed search

image Si , and seek to decrease the score in H̃i of any proposal j such that Hi(j) > τ ,

where Hi(j) indicates the probability for anchor j to correspond to the target and τ is a

threshold. Following [287], we achieve this by training the perturbation generator G with

the adversarial loss term

Lfool(F , z, S̃i) = λ1
∑

j|Hi(j)>τ

max
(
H̃i(j)− (1− H̃i(j)), µc

)
+λ2

∑
j|Hi(j)>τ

(
max

(
R̃w
i (j), µw

)
+ max

(
R̃h
i (j), µh

))
,

(6.1)

where R̃w
i (j) and R̃h

i (j) represent the width and height regression values for anchor j.

The first term in this objective aims to simultaneously decrease the target probability

110

6.3. Methodology

and increase the background probability for anchor j where the unattacked classification

map contained a high target score. The margin µc then improves the numerical stability

of this dual goal. The second term encourages the target bounding box to shrink, down

to the limits µw and µh, to facilitate deviating the tracker.

Shift Loss. The loss Lfool discussed above only aims to decrease the probability of the

anchors obtained from the unattacked search region. Here, we propose to complement

this loss with an additional objective seeking to explicitly activate a different anchor box

t, which we will show in our experiments to improve the attack effectiveness. Specifically,

we aim for this additional loss to activate an anchor away from the search region center,

so as to push the target outside the true search region, which ultimately will make the

tracker be entirely lost. To achieve this, we seek to activate an anchor t lying at a

distance d from the search region center. We then write the loss

Lshift(F , z, S̃i) = λ3Lcls(H̃i(t)) + λ4Lreg(R̃i(t), r∗) , (6.2)

where Lcls is a classification loss encoding the negative log-likelihood of predicting the

target at location t, and Lreg computes the L1 loss between the regression values at

location t and pre-defined regression values r∗ ∈ R4, a vector of 4 parametrizing regression

values associated with a ground truth propasal at location t.

Extension to Targeted Attacks. The untargeted shift loss discussed above aims to

deviate the tracker from its original trajectory. However, it does not allow the attacker

to force the tracker to follow a pre-defined trajectory. To achieve this, we modify

our perturbation generator to be conditioned on the desired direction we would like

the tracker to predict. In practice, we input this information to the generator as an

additional channel, concatenated to the template. Specifically, we compute a binary

mask Mi ∈ {0, 1}(W×H), and set Mi(j) = 1 at all spatial locations under the bounding

box which we aim the tracker to output. Let Bt
i be such a targeted bounding box, and

rti the corresponding desired offset from the nearest anchor box. We can then express a

shift loss similar to the one in Eq. 6.2 but for the targeted scenario as

Lshift(F , z, S̃i,Mi) = λ3Lcls(H̃i(t)) + λ4Lreg(R̃i(t), r
t
i) , (6.3)

where, with a slight abuse of notation, t now encodes the targeted anchor.

Overall Loss Function.

In addition to the loss functions discussed above, we use a perceptibility loss Lp aiming

to make the generated perturbations invisible to the naked eye. We clip the

111

Chapter 6. Universal, Transferable Adversarial Perturbations

We express this loss as

Lp = λ5‖Si − Clip{Si,ε}{Si + δ̂}‖22 , (6.4)

where the Clip function enforces an L∞ bound ε on the perturbation. We then write the

complete objective to train the generator as

L(F , z,Si) = Lfool + Lshift + Lp , (6.5)

where Lshift corresponds to Eq. 6.2 in the untargeted case, and to Eq. 6.3 in the targeted

one.

6.3.3 Universal Perturbations: Inference time

Once the generator is trained using the loss in Eq. 6.5, we can use it to generate a

temporally-transferrable perturbation from the template zt of any new test sequence, and

use the resulting perturbation in an online-tracking phase at inference time. This by itself

produces a common transferable perturbation for all frames of a given video, thereby

drastically reducing the computational cost of perturbation compared to the image-

dependendent perturbations in [152, 287]. Importantly, we observed that the trained

generator learns to output a fixed perturbation pattern irrespective of the input template.

This is attributed to the fact that our framework by design relies on exploiting key

template information only, while being agnostic to the object’s environment, thus forcing

the generator to learn a universal adversarial function that disrupts the object-specific

features in siamese-networks. Therefore, at inference time, we precompute a universal

perturbation δu for an arbitrary input and apply it to any given test sequence to deviate

the tracker from the trajectory predicted from unatttacked images. Furthermore, to

force the tracker to follow complex target trajectories, such as following the ground-truth

trajectory with an offset, we use precomputed universal directional perturbations for a

small number, K, of predefined, diverse directions, with K = 12 in our experiments, and

define the target trajectory as a sequence of these directions.

Relation to Prior Generative Attacks. Our proposed framework bears similarities

with CSA in that both train a perturbation generator to fool a siamese tracker. However,

our work differs from CSA in three fundamental ways. 1) In CSA, the perturbation

is computed for every search image by passing it to the generator. By contrast, in

our method, the perturbation depends only on the template and is shared across all

search images. 2) In CSA, the attacks are limited to the untargeted setting, whereas our

method extends to the targeted case and allows us to steer the tracker along any arbitrary

trajectory. 3) By learning a perturbation shared across all search images, while being

agnostic to them, our framework makes the perturbation more transferable than those of

CSA, to the point of producing universal perturbations, as shown in our experiments.

112

6.4. Experiments

6.4 Experiments

Datasets and Trackers. Following [287], we train our perturbation generator on GOT-

10K [100] and evaluate its effectiveness on 3 short-term tracking datasets, OTB100 [274],

VOT2018 [134] and UAV123 [185], and on one long-scale benchmark LaSOT [63]. We

primarily use white-box SiamRPN++ (R) [144] tracker with ResNet-50 [89] backbone,

and train our U-Net [224] generator. We study the transferability of attacks to 4 state-

of-the-art trackers with different frameworks, namely, SiamBAN, SiamCAR, DiMP, and

Ocean-online. We also transfer attacks to SiameseRPN++ (M) with MobileNet backbone,

differing from the ResNet backbone of the white-box model. In contrast to SiamRPN++,

which refines anchor boxes to obtain the target bounding boxes, SiamBAN and Siam-

CAR directly predict target bounding boxes in an anchor-free manner, avoiding careful

tuning of anchor box size and aspect ratio; DiMP uses background information to learn

discriminative target filters in an online fashion; Ocean-online uses a similar framework

to DiMP to learn target filters in an object-aware anchor-free manner. We report the

performance of our adversarial attacks using the metrics employed by each dataset to

evaluate the effectiveness of unattacked trackers. In particular, we report the precision

(P) and success score (S) for OTB100, UAV123, and LaSOT. For VOT2018, we report

the tracker restarts (Re) and the Expected Average Overlap (EAO), a measure that

considers both the accuracy (A) and robustness (R) of a tracker.

Evaluation Metrics. We report the performance of our adversarial attacks using the

metrics employed by each dataset to evaluate the effectiveness of unattacked trackers.

Specifically, for OTB100 and UAV123, we report the precision (P) and success score

(S). The precision encodes the proportion of frames for which the center of the tracking

window is within 20 pixels of the ground-truth center. The success corresponds to the pro-

portion of frames for which the overlap between the predicted and ground-truth tracking

window is greater than a given threshold. For VOT2018, we report the Expected Average

Overlap (EAO), a measure that considers both the accuracy (A) and robustness (R) of

a tracker. Specifically, the accuracy denotes the average overlap, and the robustness is

computed from the number of tracking failures. Furthermore, we also report the number

of restarts because the standard VOT evaluation protocol reinitializes the tracker once it

is too far away from the ground truth. To evaluate targeted attacks, we further report

the proportion of frames in which the predicted and the target trajectory center are at a

distance of at most 20 pixels.

Implementation Details. We implement our approach in PyTorch [206] and perform

our experiments on an NVIDIA Telsa V100 GPU with 32GB RAM. We train the genera-

tor using pre-cropped search images uniformly sampled every 10 frames from the video

sequences of GOT-10K. We use the Adam [124] optimizer with a learning rate of 2×10−4.

We set the margin thresholds mc, mw, mh to -5 as in [287], and the l∞ bound ε to {8, 16}.

113

Chapter 6. Universal, Transferable Adversarial Perturbations

To fool the tracker, we use λ1 = 0.1, λ2 = 1, λ5 = 500 as in csa, and activate an anchor

at distance d = 4 directly below the true center and of size 64× 64 for all untargeted ex-

periments. Furthermore, we set the shift loss weights λ3 and λ4 to 0.1 and 1, respectively.

For targeted attacks, we define rti in Eq. 6.3 as a randomly-selected anchor at distance

d = 4 from the true center and set its size to 64 × 64 for all datasets. We resize the

search images to 255×255 and the template to 127×127 before passing them to the tracker.

Baselines. We compare our approach with the state-of-the-art, generator-based CSA [287]

attack strategy, the only other online method performing untargeted attacks on RPN-

based trackers.1 Specifically, CSA can be employed in 3 settings: CSA (T), which on

attacks the template, CSA (S), which attacks all search images, and CSA (TS), which

attacks both the template and all search regions. As will be shown below, CSA (T), the

only version that, as us, generates a perturbation from only the template, is significantly

less effective than CSA (S) and CSA (TS). These two versions, however, compute a

perturbation for each search region, whereas our approach generates a single transferable

perturbation from the template, and uses it at virtually no additional cost for the rest of

the sequence, or even to attack other video sequences.

Computing a Universal Perturbation. During inference, we can use the object

template cropped form any arbitrary sequence as input to the generator. For our

experiments, without any loss of generality, we use the template cropped from the first

video sequence of OTB100 to obtain a universal adversarial perturbation. Furthermore,

for targeted attacks, we precompute K = 12 diverse universal directional perturbations

with same template as input, and use them to force the tracker to follow any target

trajectory for any input video sequence.

6.5 Results

1. How efficient is the proposed approach at attacking modern trackers? One

of the primary motivation for proposing universal transferable perturbations is to not

compromise the running speed of the tracker. We therefore compare the operating speed

of the tracker before and after the attack in Figure 6.3. Across the board, CSA (S) and

CSA (TS) decrease the tracker speed significantly on average by 35 fps. For instance,

SiamCAR under CSA (TS) makes the tracker operate below real-time (30 FPS) at

15.6 fps from original 71.6 fps, thus limiting its practical applicability for surveillance.

While CSA (T) operates at a speed similar to our proposed approach, with a minimal

1The attack strategy of [152] was tailored for fully convolutional and non-regression based trackers, such
as SiamFC [14]. While the code for [152] is not public and authors did not respond to our communication,
our own reimplementation showed that distance loss in [152] was only effective for pixel-level correlation
networks, such as SiamFC, and not for regression-based trackers.

114

6.5. Results

Figure 6.3 – Change in tracker speed. We compare the speed (FPS) of state-of-the-art
trackers before and after attack.

speed degradation of about 1-5 fps, we significantly outperform it in terms of attack

effectiveness as shown in the following sections.

2. How effective is the proposed approach at attacking modern trackers?

Below, we evaluate the effectiveness of our proposed attack strategy. We denote the

perturbation obtained with our complete loss as Ours, and refer to a variant of our

method without the Lshift term as Oursf . Furthermore, we denote the variant of our

method that uses the template from the input video to compute a temporally transferable

perturbation as “TD”, which has the same perturbation cost as CSA (T).

Results on Untargeted Attacks. From Tables 6.1, 6.2, 6.3, and 6.4, we can conclude

that: (1) Our proposed approach consistently drops the performance of 5 black-box track-

ers in all settings. This highlights the generality of our approach in attacking black-box

trackers with different frameworks. (2) Ours (TD), which uses the template from the

video to compute a transferable perturbation for all search images, performs at a similar

level to that of Ours, which uses a single universal transferable perturbation (see rows 6 vs

8). This validates that our trained generator is quasi-agnostic to the input template and

enjoys the power of universality. (3) DiMP and Ocean, with online updates of discrimina-

tive filters to capture the appearance changes, are more robust to attacks on short-term

datasets than other trackers. Interestingly, however, for a large-scale dataset such as La-

SOT, the precision of Ocean-online and DiMP drops to 0.143 and 0.412 from the original

115

Chapter 6. Universal, Transferable Adversarial Perturbations

Methods
SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)
Normal 0.657 0.862 0.692 0.910 0.696 0.908 0.650 0.847 0.669 0.884

CSA (T) 0.613 0.833 0.590 0.793 0.657 0.852 0.649 0.849 0.614 0.843
CSA (S) 0.281 0.440 0.371 0.531 0.373 0.536 0.641 0.840 0.390 0.645
CSA (TS) 0.348 0.431 0.347 0.510 0.391 0.559 0.642 0.844 0.423 0.705

Oursf (TD) 0.347 0.528 0.478 0.720 0.444 0.599 0.643 0.839 0.492 0.768
Ours (TD) 0.217 0.281 0.198 0.254 0.292 0.377 0.631 0.821 0.345 0.452

Oursf 0.408 0.616 0.478 0.721 0.567 0.770 0.646 0.843 0.592 0.829
Ours 0.212 0.272 0.198 0.253 0.292 0.374 0.638 0.837 0.338 0.440

Table 6.1 – Untargeted attack results on OTB100 with ε = 8.

0.587 and 0.513, respectively. This implies that, once the tracker drifts to an incorrect

position, the online updates corrupt the filters, which is especially noticeable in long video

sequences. (4) In Table 6.4 on VOT2018, although CSA computes the perturbation from

the new template when the tracker restarts after a failure, our universal perturbations

significantly outperform CSA (TS), on average by ∼340 restarts. Moreover, our approach

significantly decreases the EAO, which is the primary metric to rank trackers (row 4 vs 8).

Methods
SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)
Normal 0.450 0.537 0.513 0.594 0.452 0.536 0.569 0.642 0.487 0.587

CSA (T) 0.465 0.553 0.462 0.444 0.352 0.419 0.501 0.593 0.446 0.516
CSA (S) 0.119 0.157 0.186 0.239 0.094 0.116 0.449 0.529 0.181 0.210
CSA (TS) 0.125 0.169 0.151 0.186 0.096 0.120 0.435 0.516 0.161 0.180

Oursf (TD) 0.166 0.214 0.198 0.239 0.129 0.152 0.418 0.499 0.248 0.308
Ours (TD) 0.114 0.146 0.095 0.108 0.079 0.092 0.419 0.487 0.112 0.128

Oursf 0.152 0.203 0.199 0.241 0.120 0.145 0.390 0.461 0.246 0.298
Ours 0.111 0.146 0.095 0.109 0.075 0.089 0.412 0.475 0.126 0.143

Table 6.2 – Untargeted attack results on LaSOT with ε = 8.

Results on Targeted Attacks. Since manually creating intelligent target trajectories

is difficult and beyond the scope of this work, we consider two simple but practical

scenarios to quantitatively analyze the effectiveness of our attacks.

1. The attacker forces the tracker to follow a fixed direction. We illustrate this with 4

different directions (+45◦, −45◦, +135◦, −135◦), and aiming to shift the box by

(±3, ±3) pixels in each consecutive frame.

2. The attacker seeks for the tracker to follow a more complicated trajectory. To

illustrate this, we force the tracker to follow the ground-truth trajectory with a

fixed offset (±80, ±80).

116

6.5. Results

Methods
SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)
Normal 0.602 0.801 0.603 0.788 0.619 0.777 0.633 0.834 0.584 0.788

CSA (T) 0.541 0.746 0.478 0.670 0.580 0.760 0.614 0.816 0.524 0.723
CSA (S) 0.288 0.466 0.299 0.485 0.270 0.440 0.593 0.798 0.264 0.489
CSA (TS) 0.270 0.452 0.278 0.487 0.271 0.428 0.598 0.811 0.278 0.510

Oursf (TD) 0.369 0.561 0.372 0.569 0.337 0.503 0.562 0.757 0.404 0.648
Ours (TD) 0.270 0.368 0.248 0.349 0.239 0.349 0.573 0.770 0.272 0.399

Oursf 0.356 0.549 0.372 0.569 0.316 0.469 0.578 0.775 0.392 0.634
Ours 0.273 0.371 0.250 0.352 0.255 0.371 0.579 0.777 0.274 0.401

Table 6.3 – Untargeted attack results on UAV123 with ε = 8.

Method
SiamRPN++(M) SiamBAN SiamCAR DiMP Ocean online

A (↑) R (↓) EAO (↑) Re (↓) A (↑) R (↓) EAO (↑) Re (↓) A (↑) R (↓) EAO(↑) Re (↓) A (↑) R (↓) EAO(↑) Re (↓) A (↑) R (↓) EAO (↑) Re (↓)
Original 0.58 0.24 0.400 51 0.60 0.320 0.340 69 0.58 0.280 0.36 60 0.607 0.3000 0.323 64 0.56 0.220 0.374 47

CSA (T) 0.56 0.440 0.265 95 0.56 0.590 0.190 126 0.56 0.426 0.280 91 0.60 0.220 0.362 47 0.45 0.580 0.189 124
CSA (S) 0.42 2.205 0.067 471 0.43 1.807 0.076 386 0.48 1.597 0.101 341 0.59 0.239 0.367 51 0.20 1.462 0.083 202
CSA (TS) 0.40 2.196 0.067 469 0.38 1.789 0.075 382 0.45 1.475 0.107 315 0.58 0.286 0.322 61 0.22 1.221 0.082 261

Oursf(TD) 0.48 1.625 0.089 347 0.48 1.508 0.079 322 0.52 1.569 0.096 335 0.60 0.26 0.337 56 0.47 0.445 0.232 95
Ours (TD) 0.51 5.095 0.029 1088 0.44 5.071 0.024 1083 0.60 3.341 0.053 712 0.59 0.512 0.219 109 0.38 1.621 0.074 346

Oursf 0.45 2.098 0.070 448 0.46 1.915 0.070 409 0.51 1.842 0.091 393 0.59 0.267 0.350 57 0.42 0.515 0.209 110
Ours 0.52 4.856 0.029 1037 0.44 5.034 0.024 1075 0.59 3.184 0.056 680 0.56 0.445 0.235 95 0.39 1.482 0.081 316

Table 6.4 – Untargeted attack results on VOT2018 with ε = 8.

Note that our attacks are capable of steering tracker along any general trajectory, not

limited to the two cases above.

In both cases, we pre-compute universal directions perturbations corresponding K = 12

diverse directions with template cropped from first video of OTB100, and use them to

force the tracker to follow the target trajectory. To this end, we sample K = 12 points

at a distance d = 5 from the object center in feature map of size 25× 25 and, for each,

synthesize a conditional mask Mi ∈ {0, 1}(W×H) whose active region is centered at the

sampled point. We then feed each such mask with the template to obtain directional

perturbations, which we will then transfer to the search images. During the attack for

each frame, we compute the direction the tracker should move in and use the precomputed

perturbation that is closest to this direction.

We report the precision score at a 20 pixel threshold for our two attack scenarios, averaged

over 4 cases, in Table 6.5 for ε = 16. For direction-based targets, our universal directional

perturbations allow us to follow the target trajectory with promising performance. Our ap-

proach yields a precision of 0.627, 0.507, 0.536, and 0.335 on average on SiamRPN++(M),

SiamBAN, SiamCAR and Ocean-online, respectively. For offset-based targets, which

are more challenging than direction-based ones, our approach yields precision scores of

0.487, 0.350, 0.331 and 0.301 on average on the same 4 black-box trackers, respectively.

Note that targeted attacks is quite challenging due to distractors and similar objects

present in the search region. Nevertheless, our universal directional perturbations set a

117

Chapter 6. Universal, Transferable Adversarial Perturbations

Figure 6.4 – Visualizations for targeted attacks. (a) The tracker is forced to move
in a constant direction, indicated by the red arrow. (b) The tracker is forced to follow
the ground truth with a fixed offset of (80, 80) pixels. The green box denotes the ground
truth, the yellow box the output bounding box under attack, the red arrow the desired
target direction.

benchmark for image-agnostic targeted attacks on unseen black-box trackers. Figure 6.4

shows the results of targeted attacks on various datasets with SiamRPN++(M). The

results at the bottom, where the tracker follows the ground-truth trajectory with an

offset, illustrate the real-world applicability of our attacks, where one could force the

tracker to follow a realistic, yet erroneous path. Such realistic trajectories can deceive

the system without raising any suspicion.

3. What perturbation patterns does the proposed approach learn? To give

insights to this question, we display the learned universal perturbations along with

adversarial search regions in Figure 6.5. In the top row, we can see that, for untargeted

attacks with the shift loss, our generator learns to place a universal object-like patch

at the shift position. By contrast, the perturbation in CSA (S) is concentrated on the

center region to decrease the confidence of the proposal. In the second row, we observe

that, for targeted attacks, the perturbations are focused around the regions of the desired

target box. This evidences that our conditioning scheme is able to capture the important

information about the desired bounding box. Furthermore, as shown in the bottom row,

our results remain imperceptible thanks to our similarity loss.

118

6.6. Ablation Studies

Figure 6.5 – Qualitative Results. We show, in the first row, the perturbations learned
for untargeted attacks; in the second row, the universal directional perturbations for
the targeted attack; in the last row, the adversarial search regions obtained with our
targeted attack framework for ε = 16.

Comparison to Iterative Black-box attacks. We compare our approach with the

state-of-the-art black-box IoU-based attack [112] in Tables 6.8 and 6.9. This IoU

attack requires access to the tracker predictions. As such, it spends a significant query

budget for each frame, thereby decreasing the tracker speed to less than 5 FPS. By

contrast, our method learns a highly transferable universal perturbation on a substitute

SiameseRPN++(R) tracker, and thus significantly outperforms the IoU attack with

virtually no drop in tracker speed. Note that we could not run the IoU attack on

large-scale datasets such as UAV123 and LaSOT because of impractical runtimes.

6.6 Ablation Studies

In this section, we analyze the impact of each loss term of our framework. In Table 6.6,

we report the precision scores on OTB100 with different combination of loss terms, where

Lclsfool and Lregfool represent the classification and regression components of the fooling loss

of Eq. 6.1, and Lclsshift and Lregshift represent the same terms for the shift loss of Eq. 6.2.

To summarize, while all loss terms are beneficial, the classification-based terms are more

effective than regression-based ones. For example, using either Lclsfool or Lclsshift has more

119

Chapter 6. Universal, Transferable Adversarial Perturbations

Dataset
SiamRPN++ (M) SiamBAN SiamCAR Ocean online

Direction Offset Direction Offset Direction Offset Direction Offset

OTB100 0.521 0.544 0.345 0.257 0.340 0.295 0.128 0.113
VOT2018 0.745 0.515 0.672 0.455 0.661 0.501 0.412 0.372
UAV123 0.476 0.401 0.325 0.295 0.397 0.297 0.260 0.267
LaSOT 0.768 0.489 0.689 0.395 0.747 0.232 0.543 0.521

Average 0.627 0.487 0.507 0.350 0.536 0.331 0.335 0.301

Table 6.5 – Targeted attack results. We report average precision scores for ε = 16 for
direction and offset-based target trajectories.

Lclsfool Lregfool Lclsshift Lregshift SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

- - - - 0.862 0.910 0.908 0.847 0.884
3 - - - 0.566 0.604 0.654 0.851 0.801
- 3 - - 0.617 0.726 0.790 0.841 0.827
- - 3 - 0.790 0.800 0.851 0.858 0.805
- - - 3 0.858 0.890 0.884 0.858 0.879
3 3 - - 0.616 0.721 0.770 0.843 0.829
- - 3 3 0.695 0.735 0.734 0.828 0.750
3 - 3 - 0.328 0.316 0.531 0.827 0.592
- 3 - 3 0.682 0.769 0.826 0.848 0.852
3 3 3 3 0.272 0.252 0.374 0.837 0.440

Table 6.6 – Component-wise analysis. Contribution of each loss for untargeted attacks on
OTB100 using our approach. We report precision score and set ε = 8.

impact than Lregfool or Lregshift. In Table 6.7, we study the impact of the shift distance d

in Eq. 6.2 on the performance of untargeted attacks. For a feature map of size 25× 25

for SiamRPN++, the performance of our approach is stable for a drift in the range 4 to

8. However, for d = 2, our attacks have less effect on the tracker, and for d = 10, the

influence of the attack decreases because of the Gaussian prior used by the tracker.

Effect of the number K of Directional Perturbations. In the targeted attack

experiments, we typically precompute K = 12 diverse directional perturbations. For

each one, we activate a target bounding boxes at a radius 4 from the center of 25× 25

feature map of SiameseRPN++ [144]. In Table 6.10, we vary this parameter K and

report the precision score for offset-based targeted attacks with ε = 16. We observe that

with minimum value of K = 4 encoding 4 directions yields lower precision scores than

K = 12 for both datasets. However, as K increases from 4 to 12, the precision scores

increase and, beyond that, either saturate or marginally decrease.

6.6.1 Effect of Hyperparameters

Untargeted Attacks. For all experiments, we set λ1 = 0.1 and λ2 = 1 as in [287].

Furthermore, we set the weights of the additional terms λ3 and λ4 to the values of λ1
and λ2, respectively. This is motivated by the fact that our additional loss components

120

6.6. Ablation Studies

Shift d SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

0 0.616 0.721 0.770 0.843 0.829
2 0.332 0.254 0.551 0.814 0.493
4 0.272 0.252 0.374 0.837 0.440
6 0.330 0.409 0.481 0.844 0.618
8 0.323 0.489 0.480 0.834 0.684
10 0.427 0.510 0.612 0.851 0.763

Table 6.7 – Ablation study. Effect of d in Lshift for untargeted attacks on OTB100. We
report precision score and set ε = 8.

Methods
SiamBAN SiamCAR SiamRPN++(M)

FPS(↑) S (↑) P (↑) FPS(↑) S (↑) P (↑) FPS(↑) S (↑) P (↑)
Normal 72.3 0.692 0.910 71.2 0.696 0.908 94 0.657 0.862
IoU 5.6 0.513 0.682 4.3 0.595 0.778 4.5 0.505 0.670
Ours 71.7 0.198 0.253 70.2 0.292 0.374 90 0.212 0.272

Table 6.8 – Comparison with black-box IoU attack on OTB100. We report untargeted attack results

with ε = 8.

perform similar task to those weighted by λ1 and λ2. We name the configuration with the

above-mentioned values as the default configuration. We then independently vary each

parameter while fixing the remaining ones to the default values on SiamesRPN++ [144]

with ε = 8.

As shown in Table 6.11, varying λ1 and λ3, encoding the classification loss terms, evidences

that the default value of 0.1 performs the best for both the OTB100 [274]. Furthermore,

Table 6.12 shows that varying λ2 and λ4, associated with the regression terms, highlights

that the results are stable for values in the range of 0.001 to 1. Nevertheless, the default

value of 1 for λ4 indeed yields the best results. Besides, λ2 = 10 performs marginally

better than the default setting of λ2 = 1.

Targeted Attacks. We perform a similar ablation study for targeted attacks on

Siamese RPN++(M) [144] black-box tracker with ε = 16. We report the results in

Tables 6.13, 6.15, 6.14, and 6.16, corresponding to varying λ1, λ2, λ3 and λ4, respectively,

on OTB100. In Table 6.13, we observe that setting λ1 in the range of 0.1 to 1 yields the

best results. In addition, we observe from Table 6.14 that λ3 = 1 performs better than

the default value of 0.1. Moreover, from Tables 6.15, 6.16, we find that λ2 = λ4 = 10

yields better precision scores than the default value of 0.1.

121

Chapter 6. Universal, Transferable Adversarial Perturbations

Methods
SiamBAN SiamCAR SiamRPN++(M)

FPS(↑) EAO (↑) Re (↓) FPS(↑) EAO (↑) Re (↓) FPS(↑) EAO (↑) Re (↓)
Normal 72.3 0.340 69 71.2 0.36 60 94.3 0.40 51
IoU 1.62 0.114 269 2.45 0.189 165 3.53 0.117 289
Ours 71.7 0.024 1075 70.2 0.056 686 90.4 0.029 1037

Table 6.9 – Comparison with black-box IoU attack on VOT2018. We report untargeted attack results

with ε = 8.

λ4 SiamRPN++ (M) SiamBAN SiamCAR

23 0.393 0.256 0.266
12 0.544 0.257 0.295
8 0.308 0.181 0.186
4 0.273 0.155 0.173

Table 6.10 – Impact of the number of directional perturbations K for 3 black-
box trackers with offset-based targeted attacks on OTB100. We report precision scores
averaged over four cases for ε = 16 and (∆x,∆y) = (80, 80).

λ1
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)
0.001 0.536 0.711 0.562 0.762 0.618 0.817 0.592 0.783
0.01 0.352 0.472 0.322 0.421 0.491 0.641 0.503 0.672
0.1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
1 0.321 0.451 0.272 0.352 0.342 0.44 0.401 0.531
10 0.352 0.501 0.363 0.501 0.413 0.572 0.521 0.721
100 0.321 0.482 0.395 0.556 0.392 0.547 0.538 0.774

(a) Varying λ1

λ3
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)
0.001 0.307 0.433 0.325 0.444 0.423 0.571 0.452 0.662
0.01 0.031 0.412 0.261 0.332 0.351 0.462 0.401 0.541
0.1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
1 0.471 0.642 0.38 0.491 0.562 0.742 0.502 0.641
10 0.442 0.601 0.38 0.501 0.482 0.623 0.501 0.602
100 0.471 0.632 0.443 0.579 0.543 0.718 0.488 0.638

(b) Varying λ3

Table 6.11 – Impact of varying λ1 and λ3 (corresponding to the classification losses
Lclsfool and Lclsshift) independently for untargeted attacks on OTB100 [274]. Setting λ1, λ3
to 0.1 performs consistently well on all black-box trackers.

6.7 Additional Qualitative Results

We provide additional qualitative results for different attack settings. In Figure 6.6,

we show the tracking outputs with offset-based targets on SiamRPN++(M) [144]. We

122

6.7. Additional Qualitative Results

λ2
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)
0.001 0.317 0.411 0.218 0.268 0.440 0.568 0.460 0.606
0.01 0.378 0.497 0.255 0.322 0.427 0.552 0.464 0.604
0.1 0.371 0.482 0.254 0.324 0.431 0.554 0.451 0.589
1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
10 0.162 0.207 0.158 0.195 0.304 0.398 0.325 0.420
100 0.257 0.409 0.313 0.465 0.300 0.427 0.375 0.641

(a) Varying λ2

λ4
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)
0.001 0.233 0.304 0.206 0.268 0.341 0.441 0.411 0.558
0.01 0.261 0.341 0.211 0.262 0.362 0.461 0.423 0.561
0.1 0.261 0.350 0.232 0.291 0.351 0.462 0.43 0.572
1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
10 0.421 0.571 0.32 0.412 0.532 0.691 0.501 0.661
100 0.452 0.626 0.363 0.472 0.514 0.678 0.482 0.658

(b) Varying λ4

Table 6.12 – Impact of varying λ2 and λ4 (corresponding to the classification losses
Lclsfool and Lclsshift) independently for untargeted attacks on OTB100 [274]. Setting λ2, λ4
to 1 performs consistently well on all black-box trackers.

λ1 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.233 0.141 0.096
0.01 0.282 0.185 0.122
0.1 0.544 0.257 0.295
1 0.478 0.365 0.346
10 0.129 0.185 0.326
100 0.007 0.007 0.017

Table 6.13 – Impact of varying λ1 for offset-based targeted attacks on 3 black-box
trackers on OTB100. We report precision scores for ε = 16 and (∆x,∆y) = (80, 80).

observe that the universal directional perturbations are concentrated along the targeted

direction and typically align with the target bounding box region. As shown in Figure 6.7,

our method can steer the tracker along a given direction for the entire video sequence

using a single temporally transferable perturbation shown in the left column of each

row. Furthermore, in Figures 6.8 and 6.9, we visualize the outputs for untargeted

attacks without and with shift loss. Our results indicate that the generated perturbation

concentrate around the center region and fool the tracker within the first few frames.

123

Chapter 6. Universal, Transferable Adversarial Perturbations

λ3 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.161 0.141 0.126
0.01 0.327 0.243 0.251
0.1 0.544 0.257 0.295
1 0.446 0.334 0.254
10 0.313 0.288 0.282
100 0.326 0.258 0.113

Table 6.14 – Impact of varying λ3 for offset-based targeted attacks on 3 black-box
trackers on OTB100. We report precision scores for ε = 16 and (∆x,∆y) = (80, 80).

λ2 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.398 0.294 0.240
0.01 0.380 0.283 0.208
0.1 0.394 0.311 0.270
1 0.544 0.257 0.295
10 0.535 0.383 .485
100 0.009 0.008 0.005

Table 6.15 – Impact of varying λ2 for offset-based targeted attacks on 3 black-box
trackers on OTB100. We report precision scores for ε = 16 and (∆x,∆y) = (80, 80).

λ4 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.479 0.339 0.359
0.01 0.457 0.357 0.321
0.1 0.428 0.301 0.267
1 0.544 0.257 0.295
10 0.551 0.343 0.404
100 0.136 0.179 0.106

Table 6.16 – Impact of varying λ4 for offset-based targeted attacks on 3 black-box
trackers on OTB100. We report precision scores for ε = 16 and (∆x,∆y) = (80, 80).

124

6.7. Additional Qualitative Results

Figure 6.6 – Qualitative results for offset-based targeted attacks on the Siame-
seRPN++(M) [144] tracker to follow the ground-truth with a fixed offset of 80 pixels
with ε = 16. We visualize the tracking outputs along with the adversarial search images
and the directional perturbations. Green represents the ground-truth bounding box,
red represents the target bounding box, and yellow represents the predicted bounding
box. We observe that the perturbation is concentrated along the direction of the target
bounding box.

125

Chapter 6. Universal, Transferable Adversarial Perturbations

Figure 6.7 – Qualitative results for direction-based targeted attacks on the
SiameseRPN++(M) [144] tracker to steer along a fixed direction. We visualize the
tracking outputs and the temporally transferable directional perturbation computed
from the object template in each row. Green represents the ground-truth bounding box,
and yellow represents the predicted bounding box. We indicate the desired trajectory
direction with red arrows and activate a bounding box at a distance of (x, y) from the
center of the feature map. We observe that the perturbation is concentrated along the
targeted direction and effective to steer the tracker for the entire video sequence.

126

6.7. Additional Qualitative Results

Figure 6.8 – Qualitative results for untargeted attacks with our approach
(Ours) on the SiameseRPN++(M) [144] tracker with ε = 16. We visualize the tracking
outputs, the adversarial search regions and the single temporally transferable directional
perturbation computed from the object template. Green represents the ground-truth
bounding box, and yellow represents the predicted bounding box. We observe that the
perturbation is concentrated around the center region and effective to fool the tracker
for the entire video sequence.

127

Chapter 6. Universal, Transferable Adversarial Perturbations

Figure 6.9 – Qualitative results for untargeted attacks with our
approach(Oursshift) on the SiameseRPN++ [144](M) tracker with ε = 8. We visualize
the tracking outputs, the adversarial search regions and the single temporally trans-
ferable directional perturbation computed from the object template. Green represents
the ground-truth bounding box, and yellow represents the predicted bounding box. We
observe that the perturbation is concentrated around the center region and effective to
fool the tracker within a few frames.

128

6.8. Conclusion

6.8 Conclusion

We have shown the existence of transferable universal perturbations to efficiently attack

black-box VOT trackers on the fly. To do so, we have introduced a framework that

relies on generating a one-shot temporally-transferable perturbation by exploiting only

the template as input, thus being invariant to the search environment. Our trained

generator produces perturbations that are quasi-agnostic to the input template, and

are thus highly transferable to unknown objects. Furthermore, we have demonstrated

that our universal directional perturbations allow us to steer the tracker to follow any

specified trajectory. In the next chapter, we conduct a systematic study to understand

the degree of transferability when the attacker has limited information on either target

architecture, data, or task.

129

7 Learning Transferable Adversarial

Perturbations

The previous chapter studied adversarial attacks when the attacker has access to a

substitute model on the same task. This chapter goes one step further and performs a

systematic analysis when the attacker’s knowledge of either target task, data, architecture,

or all is restricted. In particular, recent work has shown that such attacks could be

generated by another deep network, leading to significant speedups over optimization-

based perturbations. However, the ability of such generative methods to generalize to

different test-time situations has not been systematically studied. In this chapter, we

therefore investigate the transferability of generated perturbations when the conditions

at inference time differ from the training ones in terms of target architecture, target

data, and target task. Specifically, we identify the mid-level features extracted by the

intermediate layers of DNNs as common ground across different architectures, datasets,

and tasks. This lets us introduce a loss function based on such mid-level features to learn

an effective, transferable perturbation generator. Our experiments demonstrate that our

approach outperforms the state-of-the-art universal and transferable attack strategies.

7.1 Introduction

In recent years, deep neural networks (DNNs) have achieved great success in a wide

range of applications [111, 136, 163, 220]. However, DNNs have been demonstrated to be

vulnerable to adversarial examples [246] crafted by adding imperceptible perturbations

to clean images. In particular, two broad categories of attacks have been studied. The

first one consists of iterative algorithms [79, 168, 246], which optimize the perturbation

for each instance, and thus tend to be computationally expensive. The second one

encompasses generative methods [13, 148, 212], which train a deep network to produce

perturbations. As such, attacking the target network only involves a forward pass through

the generator, typically resulting in much faster attacks than iterative methods. However,

speed is not the only important factor to assess the strength of an attacker; its ability to

generalize to different situations is also key to its success.

131

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.1 – Learning transferable perturbations. We observe that mid-level features
are common across architectures and tasks, and thus propose to exploit them to train a
perturbation generator by maximizing the relative distance between normal and perturbed
features. We show that such a generator is effective even in the presence of a different
model, dataset, or task at test time.

In this chapter, we therefore study the transferability of perturbations obtained with

generative methods. Specifically, we investigate the transfer of such perturbations when

the conditions at inference time differ from the training ones in terms of (i) target

architecture, e.g., the generator was trained to attack a VGG-16 but the target network is

a ResNet152; (ii) target data, e.g., the generator was trained using the Paintings dataset

but the test data comes from ImageNet; (iii) target task, e.g., the generator was trained

to attack an image recognition model but faces an object detector at test time. To the

best of our knowledge, for generative methods, our work constitutes the first attempt at

transferability across tasks, and only [191] has studied generalization across architectures

and data, by introducing a loss function acting on the relative class probabilities of the

attacked and unattacked examples.

Here, by contrast, we improve the transferability of a perturbation generator across

architectures, data, and tasks by exploiting the mid-level features of DNNs. The key

motivation behind our approach is our observation that the mid-level features extracted

by DNNs with different architectures, different data, or for different tasks bear strong

similarities. This is illustrated in Figure 7.1, where we visualize the features extracted by

different backbones and for different tasks, and thus different datasets, using the method

of [59]. Our analysis suggests that adversarial perturbations that significantly affect

the mid-level features of one sample in one architecture also affect them in a different

architecture, even for a different task and with different data.

132

7.2. Related Work

We therefore propose to train a perturbation generator by maximizing the distance

between the normal features of a sample and their adversarial counterparts extracted

in the intermediate layers of a pretrained classifier. The resulting perturbations are

then transferable across architectures, datasets and tasks because they similarly affect

the mid-level features of the corresponding filters in the target setup. The perturbed

mid-level features are then propagated to the top layers of the network, and, as a result,

lead to incorrect predictions.

Contributions. Our contributions can be summarized as follows: 1. We identify

the intermediate features of CNNs as common ground across different architectures,

different data distributions and different tasks. 2. We introduce an approach that

exploits such features to learn an effective, transferable perturbation generator. 3. We

systematically investigate the effect of target architecture and target data distribution on

the transferability of adversarial attacks. Our experiments demonstrate that our approach

yields higher fooling rates than the state-of-the-art universal [148] and transferable [191]

attacks. Our code is available at https://github.com/krishnakanthnakka/Transferable

Perturbations.

7.2 Related Work

Below, we review the recent works on adversarial attacks, with a focus on generator-based

approaches.

Adversarial Attacks. Adversarial attacks were first investigated in [246] to identify

the vulnerability of modern deep networks to imperceptible perturbations in the con-

text of image classification. Since then, several attack strategies have been studied,

including single-step fast gradient descent [79, 138], and computationally more expensive

optimization-based attacks, such as CW [26], JSMA [201], and others [52, 168, 182].

While the above methods are image-dependent, the existence of Universal Adversarial

Perturbation (UAP) was first shown in [184], considering the task of learning a single

perturbation that can fool a classifier independently of the input image. Such a UAP

was iteratively updated based on its effectiveness to move the individual data samples

across the decision boundary. Other UAPs based on the computation of the singular

vectors of the Jacobian matrices of feature maps have been studied in [120]. In parallel

to UAPs, several works have shown that iterative adversarial attack strategies could

be transferred across architectures [104, 183, 184]. In particular, the recent work of

[102] proposed to improve targeted attack transferability across architectures by training

auxiliary classifiers at each intermediate layer to attack a CNN’s feature maps. The

above-mentioned methods, however, either are computationally expensive at inference

time [26, 52, 102, 104, 168, 201], or suffer from low transferability rates [183, 184].

Furthermore, most of the attacks aiming for transferability [102, 120, 184] strongly

133

https://github.com/krishnakanthnakka/Transferable_Perturbations
https://github.com/krishnakanthnakka/Transferable_Perturbations

Chapter 7. Learning Transferable Adversarial Perturbations

depend on the availability of data from the target domain. By contrast, we introduce an

efficient generative method to produce adversarial perturbations that generalize not only

across architectures, but also across training data and across tasks.

Generator-based Attacks. Generative adversarial perturbations (GAP) were first

introduced in [212]. In particular, [212] showed that a generator network can be used

to craft a UAP that transform an input image to an image-dependent perturbation.

Similarly, [88] introduced the advGAN generative framework to learn to produce ad-

versarial perturbations, and further proposed to make use of distillation to perform

black-box attacks. Based on the observation that the effectiveness of these two methods

strongly depends on the availability of data from the target domain during training,

[191] introduced the relativistic cross-entropy loss, which was shown to better generalize

across datasets. Furthermore, [148] proposed to generate UAPs by transforming the

generator’s output using a regional norm layer that enforces perturbation homogeneity.

While effective, the above-mentioned works explicitly rely on the classification boundary

of the attacked model, which we will show to tend to make them overfit to the source

data. By contrast, we identify the mid-level features as a more robust signal shared

across not only different architectures and datasets, but even across different tasks. Our

experiments will showcase the superiority of exploiting this information over the losses

used in previous approaches to train a transferrable perturbation generator.

7.3 Methodolgy

Let xi ∈ RH×W×3 be a color image of size H×W , and yi be the associated ground-truth

label. Furthermore, let f denote the task-related convolutional neural network that takes

x as input and extracts, at layer l = {lj}Lj=1, a feature map f`(xi) ∈ RN`×D` , which we

assume to be reshaped in matrix form, such that N` = H` ×W`, with H` and W` the

spatial dimensions of the feature map, and D` its number of channels.

Our goal is to train a generator G that produces a perturbation δi ∈ RH×W×3, which,

when added to the clean image xi, results in predicting a different label from yi. To this

end, we feed the input image xi to the generator to synthesize an unbounded adversarial

image G(xi), which is then clipped to be within an ε bound of xi under the `∞ norm.

Let x̂i be the adversarial image obtained after such a clipping of G(xi). In contrast

to [191, 212], which rely on the final classification boundary of the task-related network

f to train the generator with a cross-entropy-based loss, we exploit the mid-level features

of f . Specifically, we maximize the L2 distance between the normal feature map f`(xi)

and adversarial feature map f`(x̂i) at layer l using a feature separation loss term defined

as

Lfeat(xi, x̂i) = ||f`(xi)− f`(x̂i)||2F , (7.1)

where ‖ · ‖F denotes the Frobenius norm.

134

7.3. Methodolgy

The overall training scheme of our perturbation generator is provided in Algorithm 7.1.

In practice, we observe the feature separation loss of Eq. 7.1 to encourage the generator

to learn low-level, quasi-imperceptible structured patterns that affect that activations of

a few filters while either suppressing the other ones or leaving them unaffected. More

importantly, these perturbations are highly transferable.

Reason for transferability. Given the simplicity of our formulation, a natural question

that arises is what affects the transferability of perturbations among CNNs. To understand

this, we analyze the internal workings of a CNN, whose filters in each layer encode different

levels of information. In particular, in Figure 7.2, we visualize the filters of various

CNNs, sampled at different layers, using the technique of [59], which maximizes the

mean activation of the each filter. This allows us to discover common characteristics

across the different architectures. On one hand, the bottom filters, close to the input

image, extract color and edge information, as shown in the left block of Figure 7.2. On

the other, the top-level filters, close to the output layer, shown in the right block, are

more focused on the object representation, and thus more task specific. By contrast,

the mid-level filters learn more nuanced features, such as textures, and therefore tend

to display similar patterns across architectures, datasets tasks. As a consequence, and

as indicated by our experiments, attacking the initial layers requires large perturbation

strengths. Furthermore, while attacking the top-level features works well in the white

box scenario, it does not transfer well to different data or architectures, because the

features are already too architecture- and task-specific. Attacking mid-level features thus

comes as a natural choice, which we will show to yield highly transferable perturbations.

Let us now focus on understanding the reason for the transferability when the target data

is unavailable to the attacker. In Figure 7.3, we plot t-SNE visualizations of different

datasets at 4 layers of DenseNet121. The proximity of the features extracted from

the Comics or Paintings datasets, containing images from a few classes particularly

focused on humans, to those extracted from ImageNet suggests these datasets as good

candidates to train a generator that will fool an ImageNet-trained network (as shown

in Tables 7.1 and 7.2). By contrast, the ChestX dataset presents a larger domain gap.

Nevertheless, we will show that, albeit for a drop in fooling rate, our use of mid-level

features still make a ChestX-trained generator reasonably effective on ImageNet-based

classifiers. Furthermore, in Figure 7.4, we plot the top 80 activations of ImageNet,

Paintings and ChestX at layer 8 of DenseNet121. This shows that the peaks of the

ImageNet dataset (orange) are more strongly correlated to those of the Paintings dataset

(left) than to those of ChestX (right). This is confirmed by our experiments, where a

Paintings-trained generator is more effective than a ChestX-trained one. In short, while

mid-level features lead to generator transferability, the resulting effectiveness remains

affected by the similarity of the data.

135

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.2 – Filter visualization. The filters in the mid-level layers of different CNNs
follow similar activation patterns, also common across tasks, whereas those near the
classification layer focus on object-level features and are thus more task-specific.

(a) Layer 0 (b) Layer 4 (c) Layer 8 (d) Layer 13

Figure 7.3 – Feature visualization. We visualize the features extracted at 4 different
layers of DenseNet121 for different datasets using t-SNE.

7.4 Experiments

We evaluate the effectiveness of our attack strategy in diverse settings. Below, we first

discuss our experimental setup and then compare our attacks with the state-of-the-art

generator-based ones: CDA [191], RHP [148], and GAP [212]. To further demonstrate the

generalizability of our approach, we also report its performance on adversarially-trained

models and on the SSD [158] object detector with 4 different backbones.

Datasets. To train the generator, similarly to [191], we use data from either Ima-

geNet [46], Comics [18], Paintings [1] or ChestX [217] as source domain, containing 1.2M,

40K, 80K, and 8K images, respectively. We then randomly select 5000 images from

the ImageNet [46] validation set as target domain to evaluate the transferability of our

attacks. Further, we use three finegrained datasets, CUB200 [259], Stanford Cars [133],

and Aircraft [172] to study the extreme cross-domain transferability. As in [184, 191, 212],

we report the fooling rate and the absolute difference in top-1 error between before and

after the attack. The fooling rate is the percentage of images for which the label is

changed after the attack.

Models. For the target models, we make use of the publicly available PyTorch [206]

versions of VGG-16 [237], VGG-19 [237], ResNet152 [89], DenseNet121 [99], Inception-

V3 [245] and Squeezenet [101] pretrained on ImageNet. We chose this family of networks

to understand the deeper impact of transferability across diverse architectures. As

in [191], to evaluate transfer across datasets, we use ChestXNet [217] pretrained on

136

7.4. Experiments

(a) Paintings vs. ImageNet

(b) Chestx vs. ImageNet

Figure 7.4 – Top activated channels. Top-80 activated channels for ImageNet (orange)
in comparison to Paintings in (a), and to ChestX in (b), for layer 8 of DenseNet121
using 500 images from each dataset. The blue bars are more correlated to the orange ones
in the Paintings case, thereby achieving higher transferability rates than using ChestX.
Best viewed in color and zoomed in.

Gen. Training
(data)

Discriminator
(ImageNet)

VGG16 ResNet152 Inception-v3 DenseNet121 SqueezeNet1.1 Average

GAP [212] / CDA [191] / Ours

ImageNet
(1.2M)

VGG-16 99.9∗ / 99.8∗ / 99.3∗ 53.5 / 53.6 / 68.4 41.7 / 43.2 / 46.6 58.9 / 66.5 / 84.7 67.8 / 70.6 / 86.5 55.5 / 58.5 / 71.6
ResNet152 93.2 / 96.8 / 99.1 97.6∗ / 99.6∗ / 99.7∗ 60.5 / 66.0 / 74.9 87.5 / 94.2 / 98.8 83.9 / 82.8 / 89.1 81.3 / 84.9 / 90.5
Inception-v3 88.2 / 97.2 / 98.7 83.4 / 82.7 / 90.2 96.5∗ / 98.7∗ / 99.5∗ 89.5 / 93.6 / 96.0 90.9 / 92.0 / 91.5 88.0 / 91.4 / 94.1
DenseNet121 94.9 / 95.0 / 99.4 89.5 / 91.0 / 98.7 56.1 / 57.7 / 86.0 99.6∗ / 99.6∗ / 99.6∗ 79.7 / 81.5 / 95.6 80.1 / 81.3 / 94.9
SqueezeNet 88.0 / 91.5 / 96.1 50.4 / 57.1 / 76.4 48.0 / 47.6 / 70.7 64.0 / 69.0 / 88.7 99.8∗ / 99.7∗ / 99.7∗ 62.6 / 66.3 / 83.0

Average 92.8 / 96.1 / 98.6 74.9 / 76.8 / 86.7 60.6 / 62.6 / 75.6 79.9 / 84.6 / 93.7 84.4 / 85.3 / 92.5 73.5 / 76.5 / 86.8

Table 7.1 – White-box and standard black-box settings. We set ε = 10 and report
the fooling rate (in %) on 5K samples from the ImageNet val-set. The best result in each
section is shown in bold. ∗ denotes the white-box setting.

ChestX. For the perturbation generators, we use the same architectures as in [191, 212].

To train them, we use the Adam optimizer with a learning rate of 2e−4 and a batch size

of 16.

Attack settings. We perform attacks in four settings: 1. White-box attacks, where the

attacker has access to the exact target model and target data distribution; 2. Standard

black-box attacks, where the attacker has access to a substitute model from a different

family of architectures trained on the target data and to the target data itself; 3. Strict

back-box attacks, where the attacker also uses a substitute model trained on the target

data, but without having access to the target data itself; 4. Extreme black-box scenario,

we perform attacks without any knowledge of the target model or the target data.

137

Chapter 7. Learning Transferable Adversarial Perturbations

Algorithm 1 Training a transferable adversarial perturbation generator

Input: xi: clean images; f : pretrained classifer; ε: perturbation `∞ bound

Initialize generator G; Load classifier f and freeze its parameters;

repeat
Get a clean image xi and feed xi to f to obtain f`(xi);
Generate an unbounded adversarial image G(xi) and clip it within an ε bound of

xi to get x̂i;
Pass the adversarial image to f to obtain f`(x̂i);
Compute the feature separation loss Lfeat;
Compute the gradient of Lfeat w.r.t. the weights of G and update these weights

using Adam.
until convergence
return trained Generator G∗

7.4.1 Transferability to Unknown Target Model

Let us first study the standard white box and black-box settings. In this experiment, we

train the generator with target data containing 1.2M ImageNet training samples, using

one of the 5 ImageNet pretrained models as target architecture. We then evaluate the

transferability of the attack to the remaining 4 models.

Table 7.1 compares the effectiveness of our attacks to the CDA and GAP ones. We out-

perform these baselines on average by 10.5 and 13.5 percentage points (pp) (i.e., absolute

difference of fooling rates), respectively. The differences are particularly pronounced

when the generator is trained with SqueezeNet. Furthermore, in the DenseNet121 case,

the difference between CDA and Ours is 13.6pp.

A similar trend can be seen when transferring attacks within the same family of networks.

For instance, Figure 7.5 (a) shows the transferability when the generator is trained with

DenseNet121 and evaluated on other networks of the same family, namely, DenseNet161,

DenseNet169, and DenseNet201. Figure 7.5 (b) shows the results for similar experiments

on the ResNet family. Our method performs on average 1.68pp, 6.4pp better than CDA

and GAP in the case of ResNets, which demonstrates that our feature separation loss

generalizes well for attacks within the same family. Importantly, the performance gap

between Ours and the baselines increases with the difference in depth from training –

from 0.02pp on DenseNet121 to 6.3pp on DenseNet201 w.r.t. GAP.

In Figure 7.6, we further study the transferability of attacks as the number of samples

from the target data to train the generator varies. Our method (blue bar) consistently

maintains higher fooling rates, even for a small number of training samples, than GAP

(red bar) and CDA (yellow bar). Note that all methods tend to saturate when around

5K samples are available, with our method consistently outperforming the baselines.

138

7.4. Experiments

Figure 7.5 – Transferability
within the same family. We
report the fooling rates when
transferring attacks to other
networks within the same family.
The generators were trained with
DenseNet121 and ResNet152, with
ε = 10.

(a) VGG-16 (b) ResNet152 (c) Inceptionv3 (d) DenseNet121

Figure 7.6 – Limited data setup. We report the fooling rates obtained using varying
amounts of ImageNet training data. The generators were trained with SqueezeNet [101]
and ε = 10, and transferred to other networks. The x-axis represents the amount of
training data.

7.4.2 Transferability to Unknown Target Data

Let us now turn to the strict black-box setting, where the target data is unavailable to

the attacker, who then relies on a different dataset to train the generator. Note that, here,

the attacker still has access to a substitute model trained on the target data, therefore

we also study the impact of transferability to an unknown target model. Following [191],

we consider two synthetic datasets, Comics and Paintings, depicting objects similar to

the ImageNet ones, and one dataset, ChestX, containing a completely different type of

data, thus suffering from a large domain gap.

Table 7.2 compares the results of our approach with those of the baselines. Our method

yields clearly superior results for all 3 datasets. For instance, with Comics, Ours

outperforms GAP and CDA on average by 14.9pp and 10.3pp, respectively, and with

Paintings, by 14.9pp and 11.0pp, respectively. Note that, while we still outperform the

baselines when using the ChestX data, by around 22pp on average, the fooling rates of

all methods drop significantly in this challenging scenario. Nevertheless, altogether, these

results evidence that one can learn to generate adversarial examples with high fooling

rates despite not having access to the target data, even by using data from a completely

different domain. Furthermore, the resulting generator generalizes particularly well to

the unseen target domain when trained with our feature separation loss.

139

Chapter 7. Learning Transferable Adversarial Perturbations

Gen. Training
(data)

Discriminator
(ImageNet)

VGG16 ResNet152 Inception-v3 DenseNet121 SqueezeNet 1.1 Average

GAP [212] / CDA [191] / Ours

Comics
(40K)

VGG-16 99.8 / 99.9 / 99.5 54.3 / 54.0 / 77.4 45.8 / 45.2 / 61.9 66.3 / 64.2 / 93.6 70.7 / 68.4 / 93.4 67.4 / 66.3 / 85.1
ResNet152 75.3 / 95.8 / 99.3 97.6 / 98.1 / 99.6 31.7 / 66.5 / 73.1 45.1 / 87.7 / 98.6 67.3 / 86.0 / 90.7 63.4 / 86.8 / 92.3
Inception V3 84.3 / 85.6 / 99.0 97.2 / 97.3 / 90.4 99.8 / 99.8 / 99.6 88.5 / 88.0 / 96.7 82.4 / 82.3 / 93.2 90.5 / 90.6 / 95.8
DenseNet121 96.9 / 92.0 / 96.5 98.0 / 86.3 / 93.0 83.1 / 65.7 / 82.5 99.4 / 98.4 / 98.8 78.3 / 75.7 / 91.9 91.2 / 83.6 / 92.5
SqueezeNet 87.7 / 89.9 / 96.5 54.0 / 58.2 / 79.0 51.2 / 51.4 / 75.4 68.7 / 76.3 / 90.2 99.7 / 99.8 / 99.7 72.3 / 75.1 / 88.2

Average 88.8 / 92.6 / 98.2 80.2 / 72.8 / 87.8 62.3 / 65.8 / 78.5 73.6 / 82.9 / 95.6 79.7 / 82.5 / 93.8 76.9 / 80.5 / 90.8

Paintings
(80K)

VGG-16 99.4 / 99.9 / 99.0 41.1 / 57.6 / 66.6 36.5 / 46.6 / 50.0 50.8 / 73.8 / 84.6 63.7 / 73.0 / 86.4 58.3 / 70.1 / 77.3
ResNet152 80.4 / 89.9 / 98.7 95.4 / 97.5 / 99.4 50.7 / 62.1 / 72.8 70.4 / 82.3 / 97.9 70.4 / 81.1 / 89.2 73.5 / 82.6 / 91.6
Inception V3 80.3 / 80.5 / 98.6 95.8 / 96.4 / 88.2 99.6 / 99.6 / 99.5 87.7 / 87.2 / 95.2 77.5 / 72.8 / 90.8 88.2 / 87.3 / 94.5
DenseNet121 87.6 / 86.5 / 96.2 80.1 / 81.2 / 90.9 51.4 / 50.4 / 76.0 98.8 / 98.9 / 97.4 73.6 / 73.7 / 91.7 78.3 / 78.1 / 90.5
SqueezeNet 82.8 / 80.7 / 95.2 46.0 / 46.0 / 73.4 44.5 / 47.4 / 71.0 59.3 / 56.5 / 87.2 99.4 / 99.3 / 99.6 66.4 / 66.0 / 85.3

Average 86.1 / 87.5 / 97.6 71.7 / 75.8 / 83.7 56.5 / 61.2 / 73.9 73.4 / 79.7 / 92.5 76.9 / 80.0 / 91.5 72.9 / 76.8 / 87.8

ChestX
(10K)

VGG-16 78.7 / 85.6 / 93.3 23.2 / 23.3 / 41.8 25.5 / 27.9 / 31.3 27.5 / 28.2 / 53.4 46.1 / 48.0 / 64.3 40.2 / 42.6 / 56.8
ResNet152 39.9 / 44.8 / 56.4 27.0 / 25.3 / 62.8 28.2 / 25.7 / 27.7 25.9 / 26.6 / 38.1 44.9 / 47.1 / 60.5 33.2 / 33.9 / 49.2
Inception V3 56.0 / 50.3 / 91.6 35.9 / 32.0 / 69.5 44.4 / 35.1 / 84.9 45.9 / 35.4 / 77.4 65.1 / 57.7 / 75.6 49.5 / 42.1 / 79.8
DenseNet121 42.8 / 42.3 / 64.0 26.4 / 25.2 / 44.2 28.0 / 28.8 / 34.0 41.9 / 48.2 / 76.0 54.2 / 48.8 / 60.2 38.7 / 38.7 / 55.7
SqueezeNet 51.7 / 51.1 / 81.1 27.9 / 31.6 / 52.5 30.2 / 33.1 / 47.1 31.6 / 35.1 / 64.2 81.3 / 78.9 / 96.4 44.5 / 46.0 / 68.3

Average 53.8 / 54.8 / 77.2 28.1 / 27.4 / 54.2 31.3 / 30.1 / 45.0 34.6 / 34.7 / 61.9 58.3 / 56.1 / 71.4 41.2 / 40.6 / 62.0

Table 7.2 – Transferability in the strict black-box setting with no access to
target data. We set ε = 10 and report the fooling rate for 5K samples from the
ImageNet validation set.

Discriminator
(Model)

Gen. Training
(data)

VGG16 ResNet152 Inception-v3 DenseNet121 SqueezeNet1.1
Average

GAP [212] / CDA [191] / Ours

ChestXNet
(trained on

ChestX)

Comics40K 65.4 / 58.2 / 77.3 50.5 / 38.9 / 57.4 55.4 / 46.5 / 60.2 61.4 / 48.1 / 76.9 71.6 / 68.0 / 79.7 60.9 / 51.9 / 70.3
Comics10K 66.8 / 58.1 / 77.0 50.3 / 38.8 / 55.2 55.0 / 45.7 / 59.1 62.2 / 49.1 / 74.9 70.1 / 68.8 / 78.9 60.9 / 52.1 / 69.0
Paintings80K 76.6 / 63.2 / 78.2 53.8 / 46.2 / 56.8 56.8 / 52.9 / 60.2 73.7 / 55.3 / 77.7 79.3 / 70.2 / 80.5 68.0 / 57.5 / 70.7
Paintings10K 76.7 / 61.3 / 78.4 52.9 / 41.7 / 59.9 57.4 / 49.5 / 61.7 74.6 / 50.5 / 79.1 78.6 / 67.4 / 81.1 68.0 / 54.1 / 71.9
ChestX10k 43.3 / 48.2 / 66.3 29.2 / 23.7 / 49.5 24.9 / 26.5 / 48.5 35.3 / 28.8 / 65.0 52.8 / 45.5 / 72.5 37.1 / 34.5 / 60.4

Average 65.7 / 57.8 / 75.4 47.3 / 37.8 / 55.8 49.9 / 44.2 / 57.8 61.4 / 46.4 / 74.7 70.5 / 64.0 / 78.5 59.0 / 50.0 / 68.5

Table 7.3 – Extreme cross-domain transferability analysis using a generator
trained with ChestXNet and different datasets. We set ε = 10 and report the
fooling rates on 5K ImageNet val-set samples.

7.4.3 Extreme Cross-Domain Transferability

We further study the transferability of adversarial attacks in the extreme scenario

where neither the target architecture nor the target data are available, and where even

the classifier used to learn the generator was trained on data that differs from the

target domains. To this end, we use ChestXNet [217] pretrained on ChestX dataset as

classifier. We train the generator with different datasets on denseblock12 and evaluate its

transferability in Table 7.3. Despite the challenging nature of this setting, our method

still yields satisfying fooling rate; 68.5pp on average vs 87.0pp in the standard black-box

scenario. Furthermore, our approach outperforms the state-of-the-art CDA by 18.5% on

average.

Furthermore, we conduct the transferability study from ImageNet trained generators on

three fine-grained datasets namely CUB200, Stanford Cars, and Aircraft with backbones

different from training ones. As observed from Table 7.4, our method outperforms CDA

by 21pp, 21pp, and 30pp on CUB200, Stanford Cars, and Aircraft, respectively. Moreover,

the generator is trained on backbones with simple cross-entropy losses, however, the target

140

7.4. Experiments

Gen. Training
(data)

Discriminator
(ImageNet)

ResNet50 SeNEt154 SeResNet101 Average

GAP [212] / CDA [191] / Ours

ImageNet
(1.2M)

VGG-16 41.25 / 24.59 / 76.15 41.44 / 30.43 / 45.82 29.75 / 23.01 / 35.85 37.48 / 26.01 / 52.61
ResNet152 54.82 / 52.78 / 93.18 50.76 / 50.72 / 77.44 46.00 / 45.13 / 65.00 50.35 / 49.54 / 78.54
Inception-v3 40.78 / 55.63 / 70.40 33.07 / 36.49 / 48.10 35.12 / 36.59 / 39.52 36.32 / 42.90 / 52.67
DenseNet121 52.95 / 50.97 / 90.66 38.52 / 43.42 / 73.30 45.36 / 46.10 / 63.07 45.61 / 46.83/ 75.68
SqueezeNet 36.40 / 35.57 / 63.89 34.04 / 25.55 / 47.32 34.57 / 30.51 / 39.39 35.00 / 30.54 / 50.20

Average 45.13 / 43.91 / 78.86 39.57 / 37.32 / 58.40 38.16 / 36.27 / 48.57 40.95 / 39.17 / 61.94

(a) CUB200

Gen. Training
(data)

Discriminator
(ImageNet)

ResNet50 SeNEt154 SeResNet101 Average

GAP [212] / CDA [191] / Ours

ImageNet
(1.2M)

VGG-16 18.07 /48.65 / 70.22 32.35 / 30.03/ 32.41 12.66 / 14.76 / 21.73 21.03 / 31.15 / 41.45
ResNet152 37.08 / 71.27 / 94.80 33.25 / 34.31 / 62.74 22.73 / 31.51 / 62.23 31.02 / 45.70 / 73.26
Inception-v3 51.27 / 44.12 / 44.34 35.63 / 36.25 / 38.59 31.68 / 25.43 / 25.83 39.53 / 35.27 / 36.25
DenseNet121 59.84 / 57.46 / 98.32 28.98 / 34.09 / 65.27 24.71 / 25.43 / 71.76 37.84 / 38.97 / 78.45
SqueezeNet 26.07 / 30.32 / 85.33 17.09 / 16.06 / 31.69 14.40 / 18.19 / 31.54 19.19 / 21.52 / 49.52

Average 38.47 / 50.36 / 78.60 29.46 / 30.15 / 46.14 21.24 / 23.05 / 42.62 29.72 / 34.52 / 55.79

(b) Stanford Cars

Gen. Training
(data)

Discriminator
(ImageNet)

ResNet50 SeNEt154 SeResNet101 Average

GAP [212] / CDA [191] / Ours

ImageNet
(1.2M)

VGG-16 25.20 / 23.97 / 79.36 46.77 / 38.79 / 37.28 36.15 / 27.42 / 38.16 36.04 / 30.06 / 51.60
ResNet152 42.87 / 64.45 / 96.82 49.02 / 53.35 / 91.63 36.72 / 56.80 / 86.44 42.87 / 58.20 / 91.63
Inception-v3 49.38 / 43.95 / 72.61 54.25 / 35.25 / 59.41 46.28 / 43.11 / 42.87 49.97 / 40.77 / 58.30
DenseNet121 37.11 / 37.05 / 93.10 38.73 / 41.04 / 88.30 35.22 / 36.93 / 83.59 37.02 / 38.34 / 88.33
SqueezeNet 26.07 /33.63 / 82.30 27.18 / 27.57 / 41.70 38.40 / 42.78 / 52.51 30.55 / 34.66 / 58.84

Average 36.13 / 40.61 / 84.84 43.19 / 39.20 / 63.66 38.55 / 41.41 / 60.71 39.29 / 40.41 / 69.74

(c) Aircraft

Table 7.4 – Extreme cross-domain transferability from ImageNet to three fine
grained datasets. We set ε = 10 and report the fooling rate (in %) on 5K samples
from the ImageNet val-set. The best result in each section is shown in bold.

employs auxiliary losses to destruct and construct [32] the discriminative regions with

novel losses. Despite that, the ImageNet trained generator enjoys good transferability of

60% fooling rate on average.

7.4.4 Transferability to Robust Models

In this section, we study the transferability of our generators to five state-of-the-art

defenses, i.e., the high-level representation guided denoiser (HGD) [153], the input pre-

processing defense through random resizing and padding (R&P) [283], Feature Denoising

(FD) on ResNeXt-101 [285], Projected Gradient Descent (PGD) [168] on ResNet50,

and the average of three ensembles of adversarially trained Inception models [254] (En-

sembleAdv). In addition to GAP and CDA, we compare our method to RHP, which

constitute the state-of-the-art universal attack in terms of effectiveness against defenses.

As shown in Table 7.5, Ours achieves the overall best performance on HGD, R&P and

EnsembleAdv. However, we observe that none of the methods are successful in attacking

Feature denoising and PGD defenses. Note, however, that with PGD and FD, the error

rate on the clean samples is significantly higher than with other defenses, making these

141

Chapter 7. Learning Transferable Adversarial Perturbations

strategies ill-suited for practical applications.

Nework Method EnsembleAdv [254] HGD [153] RP [283] FD [285] PGD [168]

Error on normal samples 24.6 19.5 21.0 51.1 53.7

Inc-v3 RHP 29.5 26.8 23.3 2.38 2.40
Inc-v4 RHP 25.1 23.4 20.2 1.90 2.20

IncRes-v2 RHP 28.8 26.9 25.1 2.20 2.20

SqueezeNet GAP 27.2 33.1 26.7 4.24 5.84
SqueezeNet CDA 25.6 31.4 26.5 4.06 5.42
SqueezeNet Ours 33.7 43.9 32.7 7.06 3.30

Table 7.5 – Transferability to adversarially trained models. We report the absolute
percentage increase in top-1 error with ε = 16 on the 5K samples from ImageNet val-set following
[148].

7.4.5 Cross-Task Transferability Analysis

Gen. Training
(data)

Discriminator
(Trained on ImageNet)

VGG16 ResNet50 EfficientNet MobileNet-v3 Average

GAP [212] / CDA [191] / Ours

- No Attack 68.12 66.08 61.07 55.44 62.68

Comics
(40K)

VGG-16 14.9 / 22.8 / 3.60 14.2 / 20.7 / 7.55 11.3 / 12.6 / 8.00 07.5 / 11.4 / 4.30 12.0 / 16.9 / 5.86
ResNet152 32.1 / 24.0 / 9.08 25.5 / 16.9 / 8.13 30.6 / 15.7 / 7.66 21.4 / 13.0 / 5.44 27.4 / 17.4 / 7.58
Inception-v3 33.7 / 32.7 / 18.0 29.0 / 28.5 / 20.2 32.3 / 31.3 / 14.5 22.7 / 22.1 / 14.0 29.4 / 28.6 / 16.6
DenseNet121 25.1 / 23.2 / 8.08 21.8 / 19.8 / 9.28 22.4 / 20.7 / 12.9 16.8 / 15.3 / 5.60 21.5 / 19.8 / 8.96
SqueezeNet 28.5 / 26.8 / 13.7 23.1 / 24.4 / 11.3 17.8 / 20.8 / 12.8 14.2 / 18.3 / 6.53 20.9 / 22.6 / 11.1

Average 26.8 / 25.9 / 10.5 22.7 / 22.1 / 11.3 22.9 / 20.2 / 11.2 16.5 / 16.0 / 7.17 22.2 / 21.1 / 10.0

Paintings
(80K)

VGG-16 16.8 / 16.0 / 8.05 18.2 / 17.4 / 12.1 11.6 / 10.3 / 11.6 7.86 / 7.99 / 8.47 13.6 / 12.9 / 10.1
ResNet152 31.0 / 19.6 / 9.66 20.5 / 17.1 / 9.31 17.8 / 12.2 / 7.74 15.1 / 12.1 / 5.45 21.1 / 15.3 / 8.04
Inception-v3 32.9 / 33.0 / 16.0 28.4 / 28.7 / 18.9 27.4 / 27.9 / 14.2 22.6 / 21.4 / 12.1 27.8 / 27.8 / 15.3
DenseNet121 28.5 / 29.1 / 8.14 20.2 / 20.6 / 8.99 19.3 / 20.2 / 7.90 15.4 / 16.0 / 5.98 20.8 / 21.5 / 7.75
SqueezeNet 29.6 / 29.1 / 13.6 23.8 / 23.8 / 11.4 21.0 / 19.4 / 12.9 15.9 / 15.0 / 7.69 22.6 / 21.8 / 11.4

Average 27.7 / 25.4 / 11.1 22.2 / 21.5 / 12.1 19.4 / 18.0 / 10.9 15.4 / 14.5 / 7.94 21.2 / 19.8 / 10.5

ImageNet
(1.2M)

VGG-16 15.6 / 13.5 / 8.30 17.8 / 12.1 / 11.8 9.19 / 8.42 / 11.4 7.76 / 4.82 / 9.12 12.6 / 9.71 / 10.2
ResNet152 17.8 / 16.9 / 8.56 13.3 / 13.7 / 7.59 11.0 / 9.32 / 6.15 12.2 / 6.67 / 3.62 13.5 / 11.6 / 6.48
Inception-v3 12.8 / 20.1 / 15.8 15.2 / 19.1 / 18.4 12.4 / 12.0 / 13.7 11.8 / 13.6 / 9.96 13.0 / 16.2 / 14.5
DenseNet121 20.3 / 19.9 / 4.73 14.0 / 14.6 / 6.37 11.7 / 11.6 / 6.01 11.4 / 11.2 / 2.86 14.4 / 14.3 / 5.02
SqueezeNet1 25.1 / 24.5 / 13.1 21.8 / 20.4 / 10.8 17.1 / 20.1 / 11.5 12.7 / 15.4 / 6.19 19.2 / 20.1 / 10.4

Average 18.3 / 19.0 / 10.1 16.4 / 16.0 / 11.0 12.3 / 12.3 / 9.77 11.2 / 10.3 / 6.35 14.5 / 14.4 / 9.31

Table 7.6 – Transferability across tasks with access to neither the target data
nor the target model. We set ε = 16 and report the mAP for 4952 samples from the
PASCAL VOC test-set.

To demonstrate the transferability of our approach across tasks, we attack object detectors

using perturbation generators trained with image classifiers. Specifically, we choose the

SSD framework with 4 different backbones, namely, VGG16, ResNet50, EfficientNet, and

MobileNet-v3 pretrained on PASCAL VOC [61]. In Table 7.6, we report the mAP on

the PASCAL VOC test-set, containing 4952 images, for perturbation generators trained

with different image classifiers and with ε = 16. The performance of the SSD detector

on clean images is 68.1, 66.1, 61.1 and 55.4 using VGG16, ResNet50, EfficientNet and

MobileNetv3 as backbone, respectively. Our attacks significantly decrease these score and

yield lower mAPs than the baselines in most cases. These results highlight, for example,

that a generator trained on the synthetic Comics dataset with an image classifier can

fool an SSD detector trained on a different domain, with a different architecture, and

142

7.4. Experiments

(a) Train: Paintings on SqueezeNet; Eval:

DenseNet121

(b) Train: Comics10K on ChestXNet; Eval:

ResNet152

Figure 7.7 – t-SNE visualizations. We show t-SNE plots for 1000 normal (blue) images
and their adversarial (yellow) counterparts in (a) the strict black-box setting and (b)
the extreme black-box setting.

for a different task. As evidenced by the comparisons with CDA and GAP, learning to

generate perturbations that affect the mid-level features is more effective than focusing

on the classification boundary.

7.4.6 Additional Analysis

To further analyze our method, we visualize the resulting perturbed images using t-SNE

plots. Specifically, in Figure 7.7, we provide t-SNE plots obtained using the final latent

representation of 1000 normal (blue) and attacked (yellow) ImageNet images for the strict

black-box and extreme black-box scenarios. In both cases, our method yields features that

clearly separate the normal and adversarial images with large margins, whereas CDA fails

to do so. In Figure 7.8, we visualize the unbounded adversarial images obtained with

different methods and also show the bounded adversarial images computed with ε = 10

with our approach in the last column. As can also be seen in Figure 7.9, the perturbations

follow repeating patterns corresponding to the patterns of the most disrupted mid-level

filters. Note that RHP [148] explicitly enforces perturbation homogeneity using a

predefined pattern, such as vertical or horizontal patterns. Our filter visualizations for

multiple networks reveals that the bottom layers learn such horizontal and vertical stripes.

While we tried training the generator to perturb such layers, we observed that larger ε

strength are required in this case. Overall, our results evidence that attacking mid-level

filters that have strong correlations across architectures consistently improves the transfer

rates.

Limitations. In our experiments, we choose a single layer l at a time. To this end, we

sweep over each block of layers, typically around 5 on average for the studied architectures.

We empirically found that the best-performing layer is independent of the choice of

the target model to attack. For example, a generator trained with a feature separation

loss on the conv4-1 layer in VGG16 transfers to all attack settings at inference time,

avoiding repeated sweeps and computational costs. For all our experiments, we set

143

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.8 – Qualitative Results. Visualization of the unbounded outputs obtained
with generators trained on ImageNet with different methods. Our approach produces
images that are structured and better retain the content of the original images than the
baselines. Best viewed in color and zoomed.

the layer l to attack to relu after conv4-1, layer3, mixed6b, denseblock8, and fire10 for

VGG16, ResNet152, Inception-v3, DenseNet121, and SqueezeNet, respectively. We report

additional results with generators trained at different layers in Secton 7.4.9. Nevertheless,

we have no guarantees that such layers truly are optimal; in particular, better results

might be achievable by attacking ensembles of layers, but this would require tuning the

layer combination.

7.4.7 Additional Quantitative Results

In this section, we provide further insights and ablation studies of our approach.

CKA Metric.In addition to t-SNE visualizations and top activated channels of internal

layers in the main chapter, we present here in Table 7.7 the centered kernel alignment

144

7.4. Experiments

Figure 7.9 – Correlation between adversarial patterns and most disrupted
filters. The first row shows box plots for the shift in magnitude of the top 30 disrupted
filters, i.e., with the largest shift. In the second row, we show the corresponding
visualizations obtained using [59] for the top 4 filters. The third row evidences the strong
correlation between the top-disrupted filters and the unbounded adversarial images.
In the last row, we visualize the bounded adversaries for ε = 10. Comparing the left
and right blocks shows that the disrupted filters in VGG16 and SqueezeNet contain
visually-similar patterns, thereby explaining our high transfer rates. Best viewed in color
and zoomed.

(CKA) [130] values to provide additional insights about the similarities between the

internal representations of different networks. We observed that the CKA values are

typically above 0.75 for the intermediate layers that we considered in our experiments,

further explaining the reason for high transferability. For example, on transfer attacks

between VGG16 and DenseNet121, the CKA values are highest between the intermediate

layer 8 in DenseNet121 and layers 18 and 23 in VGG16. Similarly, between ResNet152

and DenseNet121, the CKA value is 0.76 for the optimal generator configuration, which

relies on layer 3 in ResNet152 and layer 8 in DenseNet121.

Iterative versus Generative Attacks.In Table 7.8, we compare the effectiveness of

our feature separation loss when used in either an iterative approach, i.e., PGD [168], or

with our proposed generator-based one. We set ε = 10 with a step size 2 and perform 10

iterations for PGD. We observe that the generator-based method significantly outperforms

the iterative method by a large margin of 45pp on average.

145

Chapter 7. Learning Transferable Adversarial Perturbations

Network & DenseNet121

Layer 3 6 8 10 12

V
G

G
16

4 0.71 0.64 0.26 0.21 0.14
9 0.48 0.58 0.42 0.30 0.19
18 0.31 0.58 0.75 0.58 0.34
23 0.26 0.50 0.79 0.69 0.41
30 0.11 0.23 0.50 0.58 0.45

Network & DenseNet121

Layer 3 6 8 10 12

R
es

N
et

1
5
2 0 0.69 0.54 0.25 0.20 0.13

1 0.74 0.82 0.42 0.33 0.21
2 0.57 0.83 0.65 0.49 0.31
3 0.24 0.45 0.76 0.80 0.56
4 0.13 0.25 0.45 0.61 0.74

Table 7.7 – CKA [130] scores to understand the similarities between the internal
representations of different networks sampled at 5 layers for 500 images on ImageNet
val-set.

Gen. Training
(data)

Discriminator
(Model)

VGG16 ResNet152 Inception-v3 DenseNet121 SqueezeNet
Average

Iterative / Generative

ImageNet

VGG16 98.4 / 99.3 31.3 / 68.4 30.6 / 46.6 40.2 / 84.7 64.6 / 86.5 41.7 / 71.6
ResNet152 47.4 / 99.1 99.4 / 99.7 30.9 / 74.9 43.6 / 98.8 51.6 / 89.1 43.4 / 90.5
Inception-v3 42.6 / 98.7 24.2 / 90.2 94.1 / 99.5 30.2 / 96.0 53.9 / 91.5 37.7 / 94.1
DenseNet121 71.2 / 98.4 49.1 / 99.7 39.2 / 86.0 99.6 / 99.6 63.6 / 95.6 55.7 / 94.9
SqueezeNet 46.7 / 96.1 22.7 / 76.4 24.4 / 70.7 28.4 / 88.7 99.7 / 99.7 30.5 / 83.0

Average 41.8 / 86.8

Table 7.8 – Comparison to an iterative approach. We set ε = 10 and report the
fooling rates on 5K ImageNet val-set samples using our feature separation loss with
either a 10-step PGD attack or our generator-based one trained on ImageNet data. The
generator-based method consistently outperforms the iterative one.

7.4.8 Additional Visualizations

Firstly in Figure 7.10, we show few example images from each domain to understand

its characteristics. We observe that ChestX contains larger domain shift than Comics

and Paintings to ImageNet. In Figure 7.11, we show the reasons for high transfer rates

between ResNet152 and VGG16 architectures due to similar mid-level filter bank. In

Figures 7.12, 7.13 and 7.14, we show the unbounded adversarial images obtained

by attacking diffferent layer positions against VGG16, SqueezeNet and DenseNet121,

respectively. In addition, we also visualize the unbounded adversarial images in strict

black-box setting in Figures 7.15, 7.16, 7.17 and 7.18 on VGG16, SqueezeNet, ResNet152

and DenseNet121, respectively. In Figure 7.19, we visualize the output detections of SSD

on different backbones with generators trained against DenseNet121 on ImageNet. In

Figure 7.20, we provide the t-SNE visualizations of the final features in the standard black-

box setting with generators trained on Comics. We set the discriminator to SqueezeNet

and compare our approach, shown in the first row, with CDA [191] and GAP [212] in

the second and third rows. Overall, we observe a clearer separation between the normal

and adversarial features using our method than with the baselines.

146

7.4. Experiments

7.4.9 Ablation Study

Finally, we perform an ablation study of our generator-based approach by attacking the

features at every block of layers in all the studied models. For this experiment, we train

the generator with 10K samples taken from ImageNet [46], Comics [18] and Paintings [1].

In Figure 7.21, we plot the fooling rates obtained when training the generator with

SqueezeNet [101], VGG16 [237], ResNet152 [89], Inception-v3 [245] and DenseNet [99],

each model corresponding to one row of the figure. The columns in each row correspond

to the different datasets. In Figure 7.22, we provide the results of a similar study but in

the cross-task setting of attacking the SSD detector with 4 different backbones, and thus

report the mAP. Overall, the results indicate a good transferability rate for all target

models and datasets. Furthermore, we observe that setting the layer l position to conv4-1

with ReLU (18), layer3 (3), mixed6b (11), denseblock8 (8), and fire10 (10) for VGG16,

ResNet152, Inception-v3, DenseNet121, and SqueezeNet, respectively, outperforms the

other layers in almost all the cases. The only exception arises in the cross-task scenario

when training the generator with a VGG16 on ImageNet10K, in which case the optimal

success rate is achieved with layer 23 instead of layer 18. These results further confirm

that attacking either the initial layers or the final ones is suboptimal for attack transfer.

Implementation Details.We train the ResNet generator following the same architecture

as in CDA [191] containing 6 residual blocks using Adam optimizer with β1 = 0.5 and

β2 = 0.99 with learning rate set to 0.0002 and batch size of 16. For all experiments,

we train the generator for 1 epoch (80K iterations) on ImageNet1.2M, 10 epochs on

Comics40K, and Paintings80K and 50 epochs on ChestX8K. Further, we decay the

learning rate by 0.3 at 30 epoch on training with ChestX. We typically warm-start the

generators when trained with ResNet and DenseNet discriminators with lower ε = 4 for

2K iterations. For attacking adversarially trained models, we perform gaussian smoothing

similar to in CDA [191]. Similar to in [191], during the evaluation of the ImageNet

target classifiers, we resize the images to the resolution of the source model before passing

them to the generator. For training the SSD models, we set the number of iterations to

120K and use an SGD optimizer with momentum 0.9, weight decay 0.0005, and batch

size 32. The learning rate starts at 0.001 and is dropped by a factor of 10 at 80K and

100K iterations. During the evaluation phase, we set the confidence threshold to 0.5 to

compute the mAP score.

147

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.10 – Sample Images. Visualization of example images from each domain.
ChestX domain focuses on lung region with high domain shift to ImageNet and does not
have color. Comics domain contains cartoon images and the Paintings domain mainly
focuses on drawings of human subjects. Both Comics and Paintings are synthetic datasets.

148

7.4. Experiments

Figure 7.11 – Black-box transfer from ResNet152 to VGG16. We analyze the
reason for the high transfer rate of 99.1% from ResNet152 to VGG16 by visualizing a few
top disrupted filters in intermediate layers. As observed from above, the top disrupted
filters in VGG16 and ResNet152 resemble similar texture patterns, and thus disrupting
them facilitates high transfer without overfitting to the source model.

149

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.12 – Qualitative Results by varying the attacked layer position on
VGG16. Visualization of unbounded adversarial outputs at 5 different layers for VGG16
on ImageNet10K training set.

150

7.4. Experiments

Figure 7.13 – Qualitative Results by varying the attacked layer position on
SqueezeNet1.1. Visualization of unbounded adversarial ouputs at 5 different layers for
SqueezeNet1.1 on ImageNet10K training set.

151

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.14 – Qualitative Results by varying the attacked layer position on
DenseNet121. Visualization of unbounded adversarial outputs at 5 different layers for
DenseNet121 on ImageNet10K training set.

152

7.4. Experiments

Figure 7.15 – Qualitative Results by varying the source dataset against VGG16.
Visualization of unbounded adversarial outputs using our approach on VGG16 with
different source datasets.

153

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.16 – Qualitative Results by varying the source dataset against
SqueezeNet1.1. Visualization of unbounded adversarial outputs of our approach
on SqueezeNet1.1. with different source datasets.

154

7.4. Experiments

Figure 7.17 – Qualitative Results by varying the source dataset against
ResNet152. Visualization of unbounded adversarial outputs using our approach for
ResNet152 with different source datasets.

155

Chapter 7. Learning Transferable Adversarial Perturbations

Figure 7.18 – Qualitative Results by varying the source dataset against In-
ceptionv3. Visualization of unbounded adversarial images using our approach for
Inceptionv3 with different source datasets.

156

7.4. Experiments

Figure 7.19 – Qualitative Results on diffferent target task We visualize the shift
in output detections for various backbones on SSD with ε set to 16. The generators are
trained with DenseNet121 on ImageNet. Best viewed in color and zoom.

157

Chapter 7. Learning Transferable Adversarial Perturbations

(a) VGG16 (b) ResNet152 (c) Inception-v3 (d) DenseNet121

(e) VGG16 (f) ResNet152 (g) Inception-v3 (h) DenseNet121

(i) VGG16 (j) ResNet152 (k) Inception-v3 (l) DenseNet121

Figure 7.20 – t-SNE visualizations in the standard black-box setting. We show
t-SNE plots for 1000 normal (blue) ImageNet images and their adversarial (yellow)
counterparts in the standard black-box setting with a generator trained on Paintings data
with SqueezeNet discriminator. We provide the visualizations of our method, CDA, and
GAP in the first, second, and third row, respectively. Our method separates the features
more clearly than the baselines.

158

7.4. Experiments

(a) Comics10K (b) Paintings10K (c) ImageNet10K

(d) Comics10K (e) Paintings10K (f) ImageNet10K

(g) Comics10K (h) Paintings10K (i) ImageNet10K

(j) Comics10K (k) Paintings10K (l) ImageNet10K

(m) Comics10K (n) Paintings10K (o) ImageNet10K

Figure 7.21 – Impact of the position of the attacked layer in the standard
black-box setting. We vary the position of the layer to attack during training from the
bottom layer to the top classification layer. We report, row-wise, the fooling rates (in %)
obtained by training the generator with SqueezeNet [101], VGG16 [237], ResNet152 [89],
Inception-v3 [245], DenseNet121 [99]. The columns indicate different training sets,
containing 10K samples from Comics, Paintings, and ImageNet. In each subplot, we
evaluate all 5 networks with ε = 10. The best performing layer position is independent
of the target architecture and target data. The x-axis represent the layer position and
y-axis denote the fooling rate.

159

Chapter 7. Learning Transferable Adversarial Perturbations

(a) Comics10K (b) Paintings10K (c) ImageNet10K

(d) Comics10K (e) Paintings10K (f) ImageNet10K

(g) Comics10K (h) Paintings10K (i) ImageNet10K

(j) Comics10K (k) Paintings10K (l) ImageNet10K

(m) Comics10K (n) Paintings10K (o) ImageNet10K

Figure 7.22 – Impact of the position of the attacked layer in the cross-task
setting. We vary the position of the layer to attack during training from the bottom
layer to the top classification layer of the recognition models, and then transfer to evaluate
the effectiveness on detection models. We report, row-wise, the mAP obtained by training
the generator with SqueezeNet [101], VGG16 [237], ResNet152 [89], Inception-v3 [245],
DenseNet121 [99]. The columns indicate different training sets, containing 10K samples
from Comics, Paintings, and ImageNet. In each subplot, we evaluate 4 backbones with
the SSD framework with ε = 16. The best performing layer position is independent of
the target task and architecture in 24 out of 25 cases. The x-axis represent the layer
position and y-axis denote the mAP metric.

160

7.5. Conclusion

7.5 Conclusion

In this chapter, we have explored the use of mid-level features in conjunction with

generative networks to learn transferable perturbations. We have shown that a generator

trained with feature separation loss can successfully fool models across architectures

and tasks, and that a proxy dataset from a different domain can be leveraged to learn

effective perturbations. Our experiments demonstrate that our method outperforms

the state-of-the-art attacks across a wide range of architectures and tasks. We have

limited our experiments to undefended models due to the unavailability of publicly

available robust models across architectures. Furthermore, we believe that a deeper

analysis of learned filter banks with respect to changes in architectures can shed light on

building better black-box models. Overall, in this chapter, our approach is motivated

by the understanding of DNNs from the filter-bank perspective. In the next chapter,

we show how adversarial attacks can be used to study the internal representation of

disentanglement-based DNNs.

161

8 Understanding Pose and Ap-

pearance Disentanglement in 3D

Human Pose Estimation

In the previous chapter, we focused on the transferability of adversarial attacks by

understanding the internal workings of DNN. In this chapter, we continue with the goal

of understanding DNNs but instead use adversarial attacks as one of the tools to study

the disentanglement in the latent representations of pose and appearance in 3D pose

estimation task. As 3D human pose estimation can now be achieved with very high

accuracy in the supervised learning scenario, tackling the case where 3D pose annotations

are not available has received increasing attention. In particular, several methods have

proposed to learn image representations in a self-supervised fashion so as to disentangle

the appearance information from the pose one. The methods then only need a small

amount of supervised data to train a pose regressor using the pose-related latent vector

as input, as it should be free of appearance information.

In this chapter, we carry out in-depth analysis to understand to what degree the state-

of-the-art disentangled representation learning methods truly separate the appearance

information from the pose one. First, we study disentanglement from the perspective of the

self-supervised network, via diverse image synthesis experiments. Second, we investigate

disentanglement with respect to the 3D pose regressor following an adversarial attack

perspective. Specifically, we design an adversarial strategy focusing on generating natural

appearance changes of the subject, and against which we could expect a disentangled

network to be robust. Altogether, our analyses show that disentanglement in the three

state-of-the-art disentangled representation learning frameworks if far from complete,

and that their pose codes contain significant appearance information. We believe that

our approach provides a valuable testbed to evaluate the degree of disentanglement of

pose from appearance in self-supervised 3D human pose estimation.

163

Chapter 8. Understanding Pose and Appearance Disentanglement

Input image 1
Output image 2

Encoder

Appearance

Pose

Pose regressor

Encoder

Appearance

Pose
Input image 2

Image decoder

Image decoder

R

R: Rotate from view 1 to 2

Output pose 1

Output image 1

Figure 8.1 – Disentanglement-based Representation Learning. Given a reference
frame and another frame from either a different view or a different time instant, an
encoder learns a representation separated into two components, appearance and pose, in
a self-supervised fashion. A pose regressor is then trained using limited annotated data
to map the latent pose vector to a 3D human pose.

8.1 Introduction

Monocular 3D human pose estimation has been at the heart of computer vision research

for decades, and tremendous results can now be achieved in the supervised learning

setting [105, 115, 174, 175, 176, 208, 209, 211, 223, 248, 250]. Unfortunately, obtaining

3D pose annotations for real images remains very expensive, particularly in the wild. As

such, self-supervised learning approaches have received an increasing attention in the

past few years [47, 96, 221, 222]. One of the common factors across all these methods

is their aim to learn a latent representation of the image that disentangles the person’s

pose from their appearance. In practice, as shown in Figure 8.1, this has been achieved

by leveraging access to either multiple views [221, 222] or video sequences [47, 96] during

training. In either case, one then only needs access to a small amount of supervised data

to effectively train a pose regressor from the pose-related portion of the latent code to

the actual 3D pose, because this portion of the latent code should in theory contain only

pose-relevant information.

Despite the impressive progress of these self-supervised 3D human pose estimation meth-

ods, several fundamental questions about their learnt representations remain unanswered.

For example, to what extent are the pose and appearance latent vectors disentangled?

164

8.2. Related Work

Do these two representations contain truly complementary information, or do they share

some signal? How do the different sources of self-supervision, i.e., multiple views or

temporal information, affect the disentanglement of these representations?

In this chapter, we seek to provide a deeper understanding of such disentangled rep-

resentations by analyzing the resulting latent spaces in two ways. First, we study the

disentanglement of the latent pose and appearance vectors with respect to the self-

supervised representation learning network. In this context, we analyze both the images

synthesized by altering the appearance codes in different ways, and the influence on pose

and appearance of different channels in the latent pose codes. Second, we investigate

the disentanglement with respect to the supervised 3D pose regressor. To this end, we

follow an adversarial attack strategy, aiming to modify the subject’s appearance so as to

affect the regressed 3D pose. However, instead of exploiting a standard adversarial attack

technique [79, 138, 168], against which disentangled pose networks were never meant to

be robust, we design a dedicated framework that should be much more favorable to such

networks. Specifically, we seek to alter only the latent appearance vector so as to affect

the 3D pose regressed from the latent pose vector extracted from the image synthesized

using the modified appearance vector with the original pose one.

Our experiments on the state-of-the-art disentangled representation learning frameworks,

NSD [221], CSSL [96] and DRNet [47], evidence that, across the board, disentanglement

is not complete and the pose codes of these frameworks contain appearance information.

Our work provides the tool to study the effectiveness of different disentanglement-

based training strategies and will serve as a valuable testbed to analyze the extent of

disentanglement in future frameworks.

Contributions. To summarize, our contributions are twofold. (1) We systematically

analyze the latent pose and appearance representations in several representative disen-

tangled networks. Our experiments lead to an interesting finding that the latent pose

vectors contain almost all of the subject’s appearance information. (2) We introduce

an adversarial strategy to understand the disentanglement of 3D pose from natural

appearance changes.

8.2 Related Work

Disentanglement-based 3D Human Pose Estimation.Disentangling pose and ap-

pearance in 3D pose estimation was first proposed in DRNet [47], where a discriminator

was employed to distinguish if the time-varying features from two images represented

the same subject or not. Furthermore, the distance between the time-invariant, i.e.,

appearance, component of one subject at two different time instants was minimized, and

the time-varying pose features were encouraged to be indistinguishable across subjects,

thereby ensuring that appearance information did not leaked into the pose features.

In [221, 222], disentanglement was achieved via the use of multiple views during training,

165

Chapter 8. Understanding Pose and Appearance Disentanglement

leveraging the intuition that, for one subject, the pose features extracted from one view

and rotated to a different view at the same time instant should be the same as those

directly extracted from that view, and the appearance features at different time instants

should be similar so as not to contain pose information. More recently, [96] designed a

contrastive loss to force the latent appearance features in temporally-distant frames to

remain close while encouraging the pose features to be different from each other. All

these methods learn the disentangled representation from unsupervised data, and then

train a shallow regressor to predict 3D pose from the pose latent vector using a limited

amount of pose labels. In this work, we study how disentangled the appearance and pose

features extracted by these methods truly are. To this end, we provide analyses based on

diverse image synthesis experiments and on adversarial attacks.

Adversarial Attacks. Deep neural networks were first shown to be vulnerable to

adversarial examples in [246]. Following this, several attacks have been proposed, using

either gradient-based approaches [79, 138] or optimization-based techniques [26, 41,

53, 182, 201]. To study the disentanglement of pose and appearance in 3D human

pose estimation, we seek to analyze if appearance changes can affect the regressed 3D

pose. In principle, we could use any of the above-mentioned attack strategy to do this.

However, they offer no control on the generated perturbations, and thus could potentially

incorporate structures that truly suggest a different pose. In other words, the disentangled

networks cannot be expected to be robust to such attacks. Therefore, we design an attack

strategy to which they can be expected to be robust. Specifically, we synthesize an image

by modifying only the appearance code of the network of interest, and show that the 3D

pose regressed from that image will typically differ from the original one. Our attacks

can be thought of as inconspicuous ones, as the generated image looks natural, with only

appearance changes to the subject. Other works [16, 116, 214, 235, 242, 312] have designed

strategies to generate realistic adversarial images, typically focusing on face recognition

datasets and using GANs [7, 78, 178]. Our approach nonetheless fundamentally differs

from those in both methodology and context; our main goal is not to attack disentangled

3D human pose networks but to study their level of disentanglement. Therefore, we

design an attack strategy that is most favorable for these networks, and against which

they can be expected to be naturally robust.

Measuring Disentanglement. In other contexts than human pose estimation, several

works have proposed metrics to quantify the degree of disentanglement of latent vectors [51,

58, 160]. These methods are of course also applicable to the self-supervised learning

frameworks that we will analyze, and we will report these metrics in our experiments.

However, these metrics do not provide any understanding of where disentanglement fails.

This is what we achieve with our diverse analyses.

166

8.3. Disentangled Human Pose Estimation Networks

8.3 Disentangled Human Pose Estimation Networks

Given an image as input, 3D human pose estimation aims to predict the 3D positions

of J body joints, such as the wrists, elbows, and shoulders. When no annotations are

available for the training images, an increasingly popular approach consists of learning a

latent representation that disentangles appearance from pose in a self-supervised fashion.

Here, we review disentanglement-based 3D human pose estimation frameworks that we

will analyze in Sections 8.5 and 8.6.

Existing disentanglement-based frameworks essentially all follow the same initial steps.

The input image I is first passed through a spatial transformer network S to extract the

bounding box corresponding to the human subject. An encoder E then takes the cropped

bounding box Ic as input and outputs a latent vector h comprising two components,

that is E : Ic → [ha,hp]. The first component, ha, aims to encode the subject’s

appearance while the second, hp, should represent the subject’s pose. The networks are

trained without any 3D pose annotations, and thus supervision is achieved via image

reconstruction. Specifically, a decoder D takes the complete the latent vector h as input

and and outputs a reconstructed version of the cropped image Ĩc, with an additional

mask M corresponding to the subject’s silhouette. The cropped image is further merged

with a pre-computed background image B to obtain the final reconstructed input image

Ĩ.

The main difference between existing frameworks lies in the way they encourage the

disentanglement of pose and appearance. Specifically, the different frameworks train the

encoder E and decoder D as follows:

NSD [221]. The neural scene decomposition (NSD) approach leverages the availability

of multiple views during training. Given a pair of images from two views at time t, NSD

passes one image to the encoder to obtain an appearance vector hta and a pose vector

htp. The pose vector htp, shaped as a 3D point cloud, is rotated to the second view using

the ground-truth camera calibration between the two views to obtain a transformed

pose vector htp,r. Furthermore, to factor out appearance from pose, NSD replaces the

appearance vector hta by an appearance vector ht1a of the same subject at a different time

instant t1. The decoder D then takes as input h = [hp,r,h
t1
a] and aims to reconstruct

the image from the second view at time t.

CSSL [96]. Instead of using multiple views, contrastive self-supervised learning (CSSL)

exploits temporal information from videos to learn a latent representation of pose and

appearance. To achieve disentanglement, CSSL encourages the distance between the

latent pose vectors ht1p and ht2p of two frames, t1 and t2, to reflect their temporal distance.

Furthermore, similarly to NSD, CSSL swaps the appearance vectors ht1a and ht2a of the

two video frames when performing image reconstruction so as to force them to learn

time-invariant information, thus encoding appearance.

167

Chapter 8. Understanding Pose and Appearance Disentanglement

DRNet [47]. The disentangled representation network (DRNet) uses a similar strategy

to that of CSSL, consisting of randomly choosing two temporal frames, t1 and t2, from a

video. However, DRNet aims to achieve disentanglement in two ways: (1) By minimizing

the distance between the two appearance vectors ht1a and ht2a ; and (2) by exploiting an

adversarial network to make the pose vector hp independent of the subject’s appearance.

Specifically, this is achieved by training the additional discriminator to output the

subject’s identity given the pose vector as input, and training the encoder E in an

adversarial fashion to fool the discriminator.

Auto-encoder. The 3 methods discussed above constitute the state of the art in learning

disentangled representations for 3D human pose estimation. In our experiments, we will

further evaluate a naive auto-encoder baseline that simply reconstructs the image by

passing the complete latent vector h as input to the decoder D. In other words, this

baseline does not enforce any form of disentanglement, and one could thus expect it to

be less robust to our appearance-based attacks than disentanglement-based frameworks.

Once trained on a large corpus of unannotated images in a self-supervised manner, the

frameworks discussed above employ a 2 layer pose regressor φ : hp → q to predict the

3D pose q from the latent pose vector hp. This pose regressor is trained with a small

amount of supervised data, while freezing the weights of the encoder.

8.4 Training Details

We employ the widely-used Human3.6M [106] dataset. We use the PyTorch [206] library

on a single GPU with 32GB RAM to run our experiments. All the networks are first

trained on Human3.6M without any label supervision using Subjects 1, 5, 6, 7, and 8,

corresponding to around 300K images. Specifically, we train the models with images

of size 500 × 500 and resize the cropped image output by the spatial transformer to

128 × 128 before passing it to the encoder. The encoder yields an appearance latent

vector ha ∈ R128 and a pose latent vector hp ∈ R600. We train all baseline models for

200K iterations. Once trained, we freeze the weights of the encoder and then train a pose

regressor containing 2 hidden layers on the PoseTrack dataset containing 35K images.

This pose regressor takes as input the latent pose vector for the disentangled networks and

the complete code for AE. When reporting 3D errors, we follow the standard evaluation

protocol of self-supervised 3D human pose estimation [96, 221], and report the mean per

joint position error (MPJPE) in mm.

8.5 Disentanglement w.r.t. the Self-Supervised Network

In this section, we study the disentanglement of pose and appearance within the self-

supervised representation learning network itself. To this end, we first analyze the impact

168

8.5. Disentanglement w.r.t. the Self-Supervised Network

of the latent appearance vector on the images synthesized by the network’s decoder. We

then turn to investigating the influence on pose and appearance of different channels in

the latent pose vector.

8.5.1 Effect of the Appearance Vector on Synthesized Images

Our first analysis consists of visualizing the images generated by the network’s decoder.

In particular, we leverage the intuition that, if the pose and appearance vectors were

disentangled, altering the appearance vector while keeping the pose one fixed should

yield images with a different subject’s appearance but the same pose. We investigate

this via the two strategies discussed below.

First, we synthesize novel images by mixing the appearance and pose information from

two subjects, S8 and S7. The top two rows of Figure 8.2(a) show the images synthesized

with DRNetwithout mixing the appearance vectors; these images look similar to the

original ones, depicting two clearly different subject’s appearances. By contrast, the

images in the third to fifth row of the figure, obtained by using S7’s pose vector and S8’s

appearance one, still contain appearance information of S7. This is particularly the case

for the images synthesized using DRNet and NSD, in which the subject’s shirt has taken

the red color of that of S7, although we use only S7’s pose code in the synthesis process.

CSSL is less subject to such failures, but they nonetheless occur in some cases, such as

in the third and fourth columns.

As a second experiment, we replace the appearance vector with a zero vector. We then

combine this zero appearance vector with the pose vector obtained from the original

image shown in the first row of Figure 8.3. As can be seen from the second row, even

though we use the same zero appearance vector to generate images of different subjects,

the synthesized images retain almost all the appearance information of the original

images, except near the head region.

Both of these experiments evidence that the pose code contains a significant amount of

appearance information and that the disentanglement is thus not complete. Nevertheless,

both experiments also show that modifying the appearance code indeed does not impact

the subject’s pose in the synthesized image. To further verify whether the appearance

codes are truly free of pose information, we visualize the appearance codes of all images

of a S7 using t-SNE in Figure 8.4. The resulting plot shows nicely-separated clusters,

which can be observed to correspond to action categories. This suggests that, although

modifying the appearance code does not visually change the subject’s pose in the

synthesized images, the appearance codes still contain information about the subject

activity, and thus about their pose.

169

Chapter 8. Understanding Pose and Appearance Disentanglement

(c) Rendered with S7 Pose and S8 Appearance using DRNet

(a) Synthesised Images of S7 using DRNet

(b) Synthesised Images of S8 using DRNet

(d) Rendered with S7 Pose and S8 Appearance using NSD

(i) Rendered with S7 Pose and S8 Appearance using CSSL

(d) Synthesised Images of S7 using NSD

(e) Synthesised Images of S8 using NSD

(h) Synthesised Images of S8 using CSSL

(f) Rendered with S7 Pose and S8 Appearance using NSD

(g) Synthesised Images of S7 using CSSL

D
R

N
et

N
S

D
C

S
S

L

Figure 8.2 – Synthesizing novel images. We take the pose information from S7 (first
row in each block) and the appearance information from S8 (second row in each block)
and synthesize novel images in the third row of each block for different disentangled
networks. The synthesized images retain some appearance information (red shirt) of S7
although we only use S7’s pose code in the synthesis.

170

8.5. Disentanglement w.r.t. the Self-Supervised Network

100 200
N

or
m

al

(a) DRNet

M
od

if
ie

d

(b) NSD (c) CSSL

Figure 8.3 – Replacing the appearance code with a fixed zero vector. In the first
row, we show the original synthesized images for three subjects on different networks.
In the second row, we set the values in the appearance vector to zero and use the same
pose vectors as in the first row. Despite using the same zero appearance vector for all
subjects, the outputs do not appear similar in content and instead retain almost all the
appearance information of the original images.

NSDDRNet CSSL

Sitting on Chair

Sitting Down

Kneeling Down

Standing (back)

Sitting on Chair

Standing (front)Standing (front)

Standing (back)

Sitting on Chair

Sitting on Chair

Sitting on Chair

Kneeling Down

Lying Down
Standing (front)

Standing (back)

Figure 8.4 – tSNE visualization of appearance codes. The appearance codes of
images from same subject S7 are clustered according to the action performed by the
subject. This indicates that the appearance code still contains information about the
pose. Best viewed in color and zoomed in.

8.5.2 Effect of the Pose Vector on Synthesized Images

In this section, we study the impact of the pose vector on the synthesized images and

further provide evidence of the presence of appearance information in the pose code. To

this end, we identify channels encoding appearance information in the pose code. Our

approach is based on the idea that two images depicting different subjects in similar poses

should ideally have similar latent pose codes. The channels that have large differences

therefore indicate the presence of appearance information.

To illustrate this, we use the two images shown in Figure 8.5(a) and plot the absolute

difference between the corresponding pose codes obtained by NSDin Figure 8.5(b),

ordering the channels by the magnitude of the difference. The latent pose indeed

disagree in many channels. We define the probability of a channel to encode appearance

information to be proportional to the absolute pose vector difference for that channel.

171

Chapter 8. Understanding Pose and Appearance Disentanglement

(a) Two images with similar poses but different appearances.

(b) Absolute difference between the pose
codes sorted by magnitude for NSD.

(c) Absolute difference between the pose
codes sorted by magnitude for DRNet.

(d) Absolute difference between the pose
codes sorted by magnitude for CSSL.

(e) Absolute difference between the pose
codes sorted by magnitude for CSSL (DA).

Figure 8.5 – Detecting appearance channels in the pose latent vector. We take
images depicting different subjects in a similar pose, for which we could expect the pose
codes to be close. However, the latent pose vectors obtained by different networks contain
channels with large differences, likely to encode appearance information.

Below, we then analyze the effect of altering the K channels with highest or lowest

appearance probability.

To this end, we take two images A and B, as shown in the left and right ends of Figure 8.6,

fix the appearance code as that of A. We then replace the channels with either the K

lowest or highest appearance probability in the pose code of A with the corresponding

values from the pose code of B. Note that all disentangled networks have a pose code

of dimension 600, and therefore K = 600 means replacing all the channels of the pose

vector.

As shown in Figure 8.6(a) for NSD, by replacing the K = 500 lowest appearance

probability channels yields an image (highlighted with a red box) with A’s appearance

172

8.5. Disentanglement w.r.t. the Self-Supervised Network

K=100 K=200 K=300 K=400 K=500 K=600

K=100 K=200 K=300 K=400 K=500 K=600

Image BImage A

(a) NSD

Replace the K lowest appearance probability channels of pose vector of A with B

Replace the K highest appearance probability channels of pose vector of A with B

Image A

K=100 K=200 K=310 K=400 K=500

Image B

(b) DRNet

K=100 K=200 K=300 K=330 K=500 K=600

Replace the K lowest appearance probability channels of pose vector of A with B

Replace the K highest appearance probability channels of pose vector of A with B

K=600

K=100 K=200 K=310 K=400 K=500

Replace the K highest appearance probability channels of pose vector of A with B

K=600

Replace the K lowest appearance probability channels of pose vector of A with B

K=100 K=200 K=300 K=330 K=500 K=600

(c) CSSL

Image B
Image A

Figure 8.6 – Influence of the pose code channels. To synthesize the images in the
middle portion of the figure, we take the appearance code corresponding to image A, and
vary the pose code in two ways. Specifically, in the top (or bottom) portion of the figure,
we replace the K channels with lowest (or highest) appearance probability with the
corresponding ones from the pose code extracted from image B. (a) For NSD, replacing
the K = 500 lowest appearance probability channels yields an image (highlighted with
a red box) depicting B’s pose and A’s appearance. Similarly, replacing the K = 200
highest appearance probability channels produces B’s appearance and A’s pose. (b) We
observe similar trends for DRNet and CSSL, although the separation of appearance and
pose inside the pose code is not as clear as for NSD.

173

Chapter 8. Understanding Pose and Appearance Disentanglement

and B’s pose. Furthermore, replacing the K = 200 highest appearance probability

channels synthesizes an image with B’s appearance and A’s pose. Both these results

indicate that the top 100-200 highest probability appearance channels in the pose code

indeed encode the appearance information for NSD. It is worth noting that with K = 600

the image depicts both the pose and appearance of B, confirming our previous experiments

in Figure 8.2.

Figure 8.6(b) and (c) for DRNet and CSSL shows the channels are not as clearly separated

in pose and appearance ones in this method. Nevertheless, the pose codes still combines

pose and appearance information.

8.6 Disentanglement w.r.t. the 3D Pose Regressor

The previous set of analyses have focused on the self-supervised representation learn-

ing networks themselves, evidencing that the latent pose vector is contaminated with

appearance information. Here, we further investigate the disentanglement w.r.t. the

supervised 3D human pose regressor, which takes the latent pose vector as input. Note

that, since the 3D pose regressor is disassociated from the appearance vector at network

level, studying the appearance and pose vector disentanglement in this context is not

straightforward. Therefore, we consider the pose estimation network comprised of the

self-supervised encoder and the supervised decoder as a standalone network and study the

effects of the input image appearance on its 3D pose output. To this end, we introduce an

adversarial perturbation strategy that explicitly focuses on modifying only the appearance

information in the input image. Below, we first describe our attack framework, and then

analyze its effects on the disentangled pose estimation networks.

8.6.1 Appearance-only Attack Framework

Our goal is to perturb only the subject’s appearance in the input image; perturbing

the image such that the subject’s pose visually changes would of course make the pose

regressor output a different pose but would not allow us to verify the disentanglement

of pose and appearance. To enforce such a constraint on our perturbations, we follow

a strategy that, intuitively, should constitute a weak attack and thus be favorable to

the disentangled network. Specifically, we only perturb the latent appearance vector,

which we combine with the original pose one to generate an adversarial image. We then

extract a new latent pose vector from this image and predict the 3D human pose from

it. If the pose regressor could discard the appearance information, it would thus not be

affected by this perturbation.

As shown in Algorithm 2, we generate an adversarial image Iadv as using a generator

network G. In practice, we take G to be either the disentangled network of interest or

174

8.6. Disentanglement w.r.t. the 3D Pose Regressor

Algorithm 2 Appearance-only attacks

Require: I: Input image, G: Pre-trained generator (with spatial transformer Gs, encoder Ge
and decoder Gd), S: Target spatial transformer, E: Target encoder, D: Target image decoder,
φ: Target pose regressor

1: Ic ← Gt(I), [h̃0
a, h̃

0
p]← Ge(Ic)

2: I0adv = Gd(h̃
0
a, h̃

0
p), [h

0
a,h

0
p]← E(S(I0adv))

3: [ha,hp]← E(S(I)),

4: q← φ(hp)), error0 =
∥∥q− φ(h0

p)
∥∥2

5: i← 1
6: while errori ≤ min. error and i ≤ max. iterations do
7: Iiadv ← Gd(h̃

i
a, h̃

0
p)

8: [hia,h
i
p]← E(S(Iiadv))

9: errori ←
∥∥q− φ(hip)

∥∥2
10: h̃i+1

a ← BackProp {errori}
11: i← i+ 1
12: end while
13: return Iadv = Iiadv

another disentangled network, and we will report results with both strategies. First,

we pass the original input image to the generator’s spatial transformer Gs and extract

the cropped image Ic using the resulting bounding box. We then encode the cropped

image Ic into an initial latent pose vector h̃0
p and latent appearance vector h̃0

a using the

generator’s encoder Ge. The combined latent vector h̃ = [h̃0
a, h̃

0
p] is then passed as input

to the generator’s decoder Gd, which outputs the reconstructed image Ĩ0c and a mask

M0. The cropped output Ĩ0c is then combined with the pre-computed background image

B to resynthesize an image I0adv at full resolution. This image then acts as input to

the target pose estimation network, which encompasses an encoder E, that may differ

from the generator one Ge, and a pose regressor. This forward pass produces an initial

pose estimate φ(h0
p). Note that the output of the target network given I0adv as input

has empirically a small mean per-joint position error (MPJPE) of around 20 mm with

respect to the prediction q obtained from the original image I. This is because, at this

point, no attack has been performed.

To attack only the subject’s appearance in the adversarial input, we fix the pose vector

h̃p = h̃0
p to generate images of depicting the subject in their original pose. Furthermore,

we also fix the mask to its initial value M = M0. We then compute an appearance-only

perturbation by optimizing the latent appearance vector h̃a in an iterative manner until

it either achieves an MPJPE error with respect to the original prediction q0 higher than

a threshold, or reaches a maximum number of iterations. Note that our previous set of

experiments in Section 8.5 have evidenced that modifying the appearance vector does

not change the observed subject’s pose, which validates our use of the network’s decoder

to generate the appearance-modified image.

175

Chapter 8. Understanding Pose and Appearance Disentanglement
(a

)
In

pu
t

(b
)

N
or

m
al

(c
) A

dv
er

sa
ri

al
(d

)
G

T
(e

)
N

or
m

al
(f

) A
dv

er
sa

ri
al

DRNet DRNet DRNet NSD NSD NSD CSSL CSSL CSSL

Figure 8.7 – Apperance-only Attack Examples. Given an input image (a) with
ground-truth pose (d), we first reconstruct (b) the images using a generator. By
optimizing the latent appearance vector, we obtain an adversarial image (c) that aims
to fool the pose regressor so that it outputs a 3D pose (f) that differs significantly from
the original predictions (e).

8.6.2 Appearance-only Attack Results

Qualitative Results.In Figure 8.7, we visualize the results of different models on

the attacked images. For all disentangled representation frameworks, small changes

in appearance produce wrong predictions. In particular, as shown in the third row, a

small change in the shirt color leads to a completely different pose for all models. This

demonstrates that the pose estimation network is dependent on the subject’s appearance

in the input image that its intermediate latent pose vector is not completely disentangled

from appearance.

Quantitative Study.We provide the results of our appearance-only attacks in Table 8.1

using the network decoder as the generator. We report the MPJPE at the initial iteration

and after the attack for each subject. Specifically, the initial error corresponds to the

error between the predictions obtained from the original image I and from the synthesized

image I0adv, without any latent attack. It is around 21.8 mm on average. This shows that

the generator faithfully reconstructs the input image and can therefore be employed to

176

8.7. Discussion

perform the attack. After the attack, the performance decrease across all the disentangled

models In other words, all models are vulnerable to our appearance-based attacks and

typically reach an MPJPE of at least 175 mm. This indicates that the latent pose

vector hp is not invariant to appearance changes and therefore that the appearance-pose

disentanglement is not complete. We provide ablative study using the same NSD decoder

as the generator for all disentangled networks in the Section 8.7.

To further evaluate quantitatively the sensitivity of a disentangled network to our

appearance-only attacks, we computed three image-based metrics, Peak Signal-to-Noise

Ratio (PSNR), Structural Similarity Index (SSIM), and Mean Square Error (MSE), to

compare the attacked images with those synthesized with the original framework. As

shown in Table 8.2, the three metrics indicate that the images obtained by attacking

DRNet are more similar to the original synthesized ones than those obtained by attacking

NSD or CSSL. This suggests that DRNet can be attacked with smaller changes, and thus

contains more appearance information in its pose vectors.

Altogether, our experiments evidence that disentangling pose and appearance in an unsu-

pervised manner for 3D human pose estimation remains far from being solved. Our attacks

thus provide a valuable testbed to valuate the effectiveness of future disentanglement-

based frameworks.

Subject
NSD DRNet CSSL Average

Initial Final Initial Final Initial Final Initial Final

S1 21.0 179.7 23.9 169.7 21.5 176.9 21.6 174.2
S5 19.6 180.0 14.1 166.7 25.3 186.5 19.6 177.1
S6 22.3 179.8 23.5 177.9 26.8 196.7 23.4 184.7
S7 18.8 179.2 17.6 177.5 24.1 191.8 20.3 182.3
S8 16.8 178.6 21.7 198.9 30.5 186.9 23.0 187.8

Average 19.7 179.5 20.2 177.5 25.6 207.5 21.8 176.8

Table 8.1 – MPJPE before and after our
appearance-based attacks. We report the
results of three networks and observe that dis-
entangled networks are vulnerable to our at-
tacks.

Metric NSD DRNet CSSL

SSIM↑ 0.947 0.963 0.943
PSNR↑ 24.65 26.45 24.37
MSE↓ 0.012 0.007 0.013

Table 8.2 – Quantitative comparison
of adversarial images with the origi-
nal synthesized images. These number
show that the images obtained by at-
tacking DRNet are closer to the origi-
nal synthesized ones, and thus that the
DRNet pose vectors tend to contain
more appearance information.

8.7 Discussion

Evaluating Disentanglement.Several methods [51, 58, 160] have been proposed for

assessing the degree of disentanglement of latent variables. In particular, we report

the two complementary state-of-the-art metrics of [160], Distance Correlation (DC) and

Information over Bias (IOB) to evaluate disentanglement. DC is bounded in [0,1] and

measures the correlation between the two latent spaces; IoB measures the amount of

information from the input image that is encoded in a given latent space. In Table 8.3,

we provide these metrics, averaged over 400 images, for the pose (P) and appearance

177

Chapter 8. Understanding Pose and Appearance Disentanglement

Figure 8.8 – Synthesizing novel im-
ages with CSSL (DA). As in Fig-
ure 8.2, we take S7’s pose vector and S8’s
appearance one and synthesize novel im-
ages with CSSL, either without (top) or
with (bottom) DA during training. The
image synthesized with CSSL (DA) re-
tain S8’s appearance without residual
red shirt color from S7.

CSSL (DA)

Lying Down

Siting on Chair

Siting on Chair

Standing (front)

Standing (back)

Figure 8.9 – tSNE visualization of
CSSL (DA) appearance codes. The
appearance codes of images from same
subject are stilll clustered according to
the action performed by the subject.

(A) latent spaces and for different disentanglement strategies. DC(A, P) contain large

values indicating that the appearance and pose are correlated. Furthermore, the IOB(I,

P) values are larger than the IOB(I, A), which suggests that the pose code encodes more

input information than the appearance code. Note that DC(A, P) cannot be used as

a standalone metric to interpret disentanglement because low values of DC can also

indicate noise in one latent space. While DRNet achieves the best DC(A, P) score, its

value of 0.90 IOB(I, A) suggests that the appearance code encodes minimal information.

Although these metrics quantify disentanglement, they offer little understanding of the

disentanglement issues, and IOB is difficult to interpret because it is unbounded and

requires training an external decoder network whose optimal architecture is unknown.

By contrast, our analyses enable a finer-grain understanding of the pose and appearance

latent spaces of representation learning strategies for human pose estimation, and provide

visual results that are easier to interpret.

Metric NSD DRNet CSSL

DC(A, P)↓ 0.88 0.59 0.77
IOB(I, A)↑ 0.79 0.90 0.95
IOB(I, P)↑ 1.15 1.08 1.29

Table 8.3 – Disentanglement-related metrics

for the pose (P) and appearance (A) latent

spaces extracted from an input image (I).

Metric CSSL CSSL(DA)

SSIM↑ 0.943 0.926
PSNR↑ 24.37 22.90
MSE↓ 0.013 0.018

Table 8.4 – Quantitative comparison of ad-
versarial images with original synthesized
images. The images obtained with DA are
less similar to original synthesized ones.

Does data-augmentation help to learn appearance-invariant features?Recently,

powerful data augmentation (DA) strategies, such as AugMix [95], CutMix [296] and

others [97, 299], have been proposed to improve the generalization power and robustness

178

8.7. Discussion

N
or

m
al

R
es

et
 w

/ D
A

R
es

et
 (

w
/o

)
D

A

Figure 8.10 – Zero appearance vectors with CSSL (DA). In first row, we show the
original image synthesized with CSSL. While, without DA (middle), the synthesized
images obtained with a zero appearance vector retain the original subject’s appearance,
with DA (bottom), all the subjects have a similar the appearance. This suggests that
DA helps to remove appearance information from the pose vectors.

of neural networks. Furthermore, classical adversarial training [117, 168] can be viewed

as a form of data augmentation with adversarial images. Here, we therefore study if data

augmentation constitutes a promising direction towards more effectively disentangling

self-supervised 3D human pose estimation networks.

Since the network architectures we consider are much more complicated than the image

recognition ones used in the above-mentioned DA works, we employ a simpler DA strategy

consisting of augmenting the output of the spatial transformer with RGB jitter. We then

re-run the analyses we presented before, focusing here on CSSL. Specifically, in Figure 8.8,

we show the images synthesized when mixing S7’s pose vector with S8’s appearance.

Note that, with DA, the images better retain the appearance of S8. Furthermore, in

Figure 8.10, we show images obtained by making use of a zero appearance vector. With

DA, all the synthesized images depict a similar subject appearance. Altogether, this

suggests that DA helps the disentanglement process in CSSL, which is further confirmed

by the DC(A, P) value that improves from 0.77 to 0.62. This value of 0.62 nonetheless

still indicates a relatively high correlation between the latent spaces. To further analyze

this, we computed a similar t-SNE plot as that of Figure 8.9, and observed that the

actions are still clustered, evidencing that the appearance code still contains some pose

information.

Similarly, we also ran our appearance-only attacks on the CSSL model trained with

DA, and observed the attacks to remain successful, suggesting that the pose vector

remains contaminated by appearance information. To evaluate quantitatively whether

DA nonetheless improved this, we report the PSNR, SSIM, and MSE metrics between the

attacked images and the original synthesized ones in Table 8.4. The values indicate that

the images obtained by attacking the network without DA are more similar to the original

179

Chapter 8. Understanding Pose and Appearance Disentanglement

Subject
AE NSD DRNet CSSL CSSL (DA) Average

Initial Final Initial Final Initial Final Initial Final Initial Final Initial Final

S1 23.5 178.8 21.0 179.7 17.1 169.5 21.5 176.9 20.7 173.6 20.8 176.2
S5 21.3 177.2 19.6 180.0 14.1 166.7 18.2 176.5 19.4 172.6 18.3 175.1
S6 24.4 179.7 22.3 179.8 16.1 176.1 22.7 179.4 22.3 172.6 21.4 178.7
S7 21.4 179.3 18.8 179.2 14.8 166.1 18.4 176.8 18.5 172.3 18.3 175.3
S8 18.0 179.4 16.8 178.6 14.4 179.2 17.4 177.9 17.8 174.0 16.7 177.8

Average 21.7 178.9 19.7 179.5 15.3 171.5 19.6 177.5 19.7 173.7 19.1 176.8

Table 8.5 – MPJPE before and after our appearance-based attack using the
same NSD decoder. We report the results of four networks and observe that disentan-
gled networks are equally vulnerable to our attacks to the non-disentangled autoencoder.

synthesized ones. In other words, CSSL (DA) requires larger changes in the input image

to attack the 3D pose regressor. Altogether, these results indicate that DA constitutes a

promising direction to improve disentanglement, and we leave the development of more

effective DA strategies as future work.

Semantic Attacks. To perform the attack, we optimize the spatially-replicated appear-

ance vector of dimension R128×16×16, which gives more flexibility to the attacker. To this

end, we employ Adam [124] with a learning rate of 0.02 and set the maximum number

of iterations to 2K. Furthermore, we set the minimum error threshold to early stop the

optimization to an MPJPE of 175mm. To evaluate our attacks, we use Subjects 1, 5, 6,

7, and 8 of Human3.6M [106], and downsample their sequences at every 20 frames to

obtain 9.6K images. Out of them, we remove the images for which the MPJPE between

the original and resynthesized image are more than 40 mm, which leaves us with 8K

images.

Additional Results. We present the results of our appearance-based attacks using

the same NSD decoder as generator in Table 8.5. We report the MPJPE at the initial

iteration and after the attack for each subject. Specifically, the initial error corresponds

to the error between the predictions obtained from the original image I and from the

synthesized image I0adv, without any latent attack. It is around 19.2 mm on average.

This shows that the generator faithfully reconstructs the input image and can therefore

be employed to perform the attack. After the attack, the performance decrease across all

the disentangled models is similar to that of the AE baseline. In other words, all models

including CSSL (DA) are vulnerable to our appearance-based attacks and typically reach

an MPJPE of at least 175 mm. This indicates that the latent pose vector hp is not

invariant to appearance changes and therefore that the appearance-pose disentanglement

is not complete. In Figures 8.11, 8.12, 8.13, and 8.14, we plot tSNE visualization of

appearance code of S7 for NSD, DRNet, CSSL and CSSL (DA), respectively, which shows

that appearance code is clustered according to action performed by subject.

180

8.7. Discussion

Figure 8.11 – tSNE visualization of NSD appearance codes of S7. The appearance
codes of images from same subject are clustered according to the action performed by
the subject. Best viewed in color and zoomed in.

181

Chapter 8. Understanding Pose and Appearance Disentanglement

Figure 8.12 – tSNE visualization of DRNet appearance codes of S7. The appear-
ance codes of images from same subject are clustered according to the action performed
by the subject. Best viewed in color and zoomed in.

182

8.7. Discussion

Figure 8.13 – tSNE visualization of CSSL appearance codes of S7. The appear-
ance codes of images from same subject are clustered according to the action performed
by the subject. Best viewed in color and zoomed in.

183

Chapter 8. Understanding Pose and Appearance Disentanglement

Figure 8.14 – tSNE visualization of CSSL (DA) appearance codes of S7. The
appearance codes of images from same subject are clustered according to the action
performed by the subject. Best viewed in color and zoomed in.

184

8.8. Conclusion

8.8 Conclusion

In this work, we have analyzed the latent vectors extracted by self-supervised disen-

tangled networks for 3D human pose estimation. Specifically, we have studied the

disentanglement of pose and appearance from the perspective of both the representation

learning network, and the supervised 3D human pose regressor. In the former case, our

analyses via diverse image synthesis strategies have evidenced that the state-of-the-art

disentanglement-based representation learning networks do not truly disentangle pose

from appearance, and in particular that the latent pose codes contain significant appear-

ance information. In the latter, we have shown that disentanglement-based networks

were not robust to appearance-only adversarial attacks, despite these attacks being

designed to be as favorable as possible to the disentanglement-based frameworks. We

believe that our analysis methodology and our semantic attacks will be beneficial to

improve disentanglement-based representation learning in the future, and thus positively

impact self-supervised 3D human pose estimation.

185

9 Conclusion

This thesis presented several approaches to understanding the underlying decision mech-

anism of DNN to adversarial examples. We have started with interpretable architectures

in Chapter 2 that achieve superior performance using attention. We have then leveraged

them to detect the adversarial examples in Chapter 3. Next, we analyzed the key reasons

for the success of the adversarial attacks in the fine-grained setting and proposed an

effective adversarial defense strategy in Chapter 4 by maximal separation of class-specific

discrimination regions. We then moved to study the mechanism of adversarial attacks

in different tasks. Notably, in Chapter 5, we observed the context in the segmentation

network as the recipe for the attack, and in Chapter 6, we showed the existence of

temporally transferable perturbations for the task of VOT. Furthermore, in Chapter 7,

we extend the conventional notion of black-box attacks beyond architectures and show

that disrupting the mid-level features allows us to attack unknown target architecture,

target data, and task. Finally, in Chapter 8 we employ adversarial attacks to understand

disentanglement of appearance and pose and show that the disentanglement of pose and

appearance is far from complete.

Below, we summarize the individual chapters’ contributions and then discuss the remain-

ing limitations and potential directions for future research.

9.1 Summary

In Chapter 2, we have introduced attention-aware structured representation learning in

the deep learning framework. Compared to attention-less counterparts, our approach

yields a more interpretable structured representation by identifying the informative

regions. Moreover, our method does not rely on additional supervision other than the

target label and can be trained in an end-to-end manner.

In Chapter 3, we leverage BoW structured representation framework to detect the

adversarial examples. We observe that the highest activated codeword is visually close

187

Chapter 9. Conclusion

to the clean image, whereas, for the adversarial inputs, it activates the codeword that

is visually dissimilar to the input image. Thus, we cast the adversarial detection as an

image similarity problem and achieve competitive performance in black-box and gray-box

settings.

In Chapter 4, we propose a defense with an additional regularization of latent space. In

particular, we force the discriminative regions away from each other while forcing the

non-discriminative image regions to effectively not participate in the decision process.

We test our proposed approach with white-box, transfer, and query-based attacks and

consistently observe performance boost over baselines.

In Chapter 5, we have focused on studying the impact of using context for the task of

semantic segmentation. While the context undeniably helps achieve superior performance

over FCNs, this spectacularly makes the resulting network vulnerable to perturbations far

from the object of interest. Nevertheless, we believe that this revelation is an important

step in future research to design architectures with contextual dependencies that do not

trade off robustness for accuracy.

In Chapter 6, we studied the universal perturbations for the task of visual object tracking

that can efficiently fool black-box trackers. We show our framework relying only on the

template makes the generator learn perturbations agnostic to the search environment

and improves transferability to the unknown target tracker. Since the generator relies on

the template, we believe it is forced to disrupt the object filters that form the core of the

tracker backbones.

In Chapter 7, we proposed the zero-query transfer attacks, where the attacker has no

knowledge about target architecture, target data, and even target task. These results

suggest that in a real-world setting achieving complete robustness on the deployed model

is not guaranteed even in the extreme setting. Further, it also indicates a common

underlying phenomenon among DNNs that attackers can potentially exploit to break the

model.

Chapter 8 shows that the disentanglement of the 3D pose estimation network is far from

complete, and the latent pose code contains almost all appearance information. We

come to this observation through semantic attacks, which are designed to change the

appearance of the person against which the disentangled pose network is expected to be

more robust. We also validate our argument with multiple image synthesis experiments

which reveal the entanglement of appearance information inside the pose code. Thus,

we extend the usefulness of adversarial attacks to go beyond fooling networks and study

their latent representations.

188

9.2. Lessons Learnt and Retrospective Comments

9.2 Lessons Learnt and Retrospective Comments

The results presented in this thesis are the outcomes of several years of research work.

Some lessons learned during these years and retrospective comments are shared below.

Attention-aware pooling. The idea came to me while studying the existing deep BoW

architectures. My original goal was to learn an interpretable codebook to understand

DNN’s decisions, but I realized in the process that the performance of BoW architectures

was not as impressive as standard architectures. Therefore, I focused on improving the

performance of BoW architectures rather than on the interpretability part. Initially, I

tried simple attention modules without label supervision, but most of them proved trivial

solutions activating all regions after training. It was only after adding some supervision

that I could solve this problem. Perhaps a better approach would have been to use the

latest self-attention modules with the query and key-like modules to learn the attention

map without label supervision.

Adversarial attacks detection. In the beginning of my Ph.D., adversarial attacks were

not the focus of my thesis but rather centered about interpretable networks. I became

interested in adversarial attacks’ direction when I realized in the paper of LID [167] that

distances to cluster centers are used to determine whether a given input is an adversarial

sample or not. I started by experimenting with attacks on BoW architectures which

led to the results presented in chapter 3. In retrospect, the best-performing adversarial

attack detection [142] method also uses cluster centers in conjunction with an advanced

distance Mahalanobis metric, thereby establising strong connection to prototype-based

networks. Interestingly, I found in Chapter 4 that the proposed Attenional ProtoPNet

improved detection rates by about 20% AUROC, suggesting that more efforts could be

made in this direction to detect the attacks using BoW-based architectures.

Implementation. The work I did in my thesis covered a range of tasks such as im-

age recognition, pose estimation, object detection, semantic segmentation, and object

tracking. For each paper, it was difficult for me to get momentum and build a code-

base in the beginning weeks. Among the fundamental habits I picked up and strongly

recommend to budding PhD students are continuous logging of experiments with all

hyper-parameters, writing modular codes, tabulating experimental results, tracking a

large number of experiments, and, most importantly, understanding what the reasons are

for unexpected outcomes. In my experience, some of the ideas presented in the thesis are

merely accidental and abstract at the outset. The ideas begin to take shape and form

with clear intuition only after a deeper and thorough analysis of the experimental results

that are seemingly less than impressive.

189

Chapter 9. Conclusion

9.3 Limitations and Future Work

Understanding the behavior of the DNNs to adversarial attacks has been the central

theme of the thesis. However, this analysis has some limitations, and this thesis would

be incomplete without discussing them. We also point to potential directions for future

research.

Physically realizable attacks. While the digital adversarial patch attacks in Chap-

ters 5 are relevant from the safety point of view, there are some caveats to replicating

the attacks in the physical world. Notably, the learned perturbation should be effective

to common image transformations and corruptions (i.e., non-adversarial) in the outside

world. Further, simulating the attack environment takes considerable manual effort with

many uncontrolloble dynamics. While a robust perturbation can be estimated by the

Expectation Over Transformation [10] strategy, however, this drastically increases the

computational complexity of learned perturbation. Furthermore, the effectiveness of

adversarial attacks in systems that rely on multiple modalities such as vision, percep-

tion, motion, and voice needs to be thoroughly studied to understand the full practical

significance.

Generalization-Robustness Tradeoff. It is a well-known phenomenon that adver-

sarial training leads to a considerable drop in performance on clean samples. Notable

extensions such as adversarial logit pairing [117] to match the clean and adversarial

predictions, augmenting with large unlabelled data [2, 27, 94, 230], adversarial training

with adaptive ε [11, 35, 48], curriculum-based adversarial training [23, 264, 305] to

gradually increase the number of iterations for the attack, ensemble-based adversarial

training [118, 198, 255, 288], etc., has improved the standard adversarial training but

none of them achieve satisfactory performance. Moreover, computational complexity is a

critical bottleneck for which many efficient adversarial training [234, 272] strategies have

been proposed. Overall, adversarial training has its own limitations, and other directions

beyond adversarial training should be studied to improve the robustness of DNNs.

Targeted attacks. A major drawback in this thesis is that most of our attacks, except

the ones in Chapter 5, are focused on the untargeted setting, i.e., changing the label

other than the original prediction. Although our untargeted attacks in Chapters 7 reveal

the vulnerabilities of DNNs in black-box cases, it is more challenging to conduct a similar

study on targeted black-box attacks. The mid-level filter bank, which contains low-level

class-agnostic information, might not be optimal to achieve targeted attacks in black-box

cases. However, the recent works [103, 147, 190, 313] show that it is quite possible to

learn perturbation generators even when the labels of the source and target domain do

not overlap. Nevertheless, the transferability of targeted attacks to a competitive level is

an unsolved problem that requires deeper attention.

Beyond `∞ perturbations. The attacks discussed in Chapter 7 is focused on `∞-

190

9.3. Limitations and Future Work

bound attacks. Furthermore, the adversarial training in Chapter 4 also advocates `∞
perturbation during the generation of dynamic adversaries. However, it was shown that

in [252] achieving robustness to one perturbation will trade-off with the robustness with

other perturbation types such as `2 and `1. This poses a deeper question as to whether

achieving true robustness to multiple perturbation types is fundamentally at odds and

thus remains an open problem.

Meta-learning of adversarial perturbations. Another exciting direction is the meta-

learning of perturbation generators on an ensemble of classifiers wherein each step, one

can simulate a white-box and black-box kind of framework to enhance the transferability.

Recent attempts [68, 294] along these lines show promising results in iterative setup.

Nonetheless, these methods still requires a large number of ensemble models during the

meta-training step and also leaves room for improvement particularly in the black-box

setting.

Attacks beyond CNNs. In this thesis, we have limited our analysis and experiments

on adversarial attacks to CNNs. Vision Transformers have recently seen a remarkable

surge with an impressive performance over a wide range of applications. To this end,

there has been emerging literature [17, 171, 192, 268] which studied the adversarial

transferability betweens CNNs and Transformers. With Transformers most likely to

advance the machine learning, understanding its robustness is an exciting area for future

research.

191

Bibliography

[1] Painter by number. https://www.kaggle.com/c/painter-by-numbers/data, 2017.

[2] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert

Stanforth, and Pushmeet Kohli. Are labels required for improving adversarial

robustness? Advances in Neural Information Processing Systems, 32, 2019.

[3] Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep

networks. In Advances in Neural Information Processing Systems, pages 2270–2278,

2016.

[4] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias

Hein. Square attack: a query-efficient black-box adversarial attack via random

search. In European Conference on Computer Vision, pages 484–501. Springer,

2020.

[5] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

Netvlad: Cnn architecture for weakly supervised place recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages

5297–5307, 2016.

[6] Relja Arandjelovic and Andrew Zisserman. All about vlad. In Computer Vision

and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 1578–1585.

IEEE, 2013.

[7] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative

adversarial networks. In International conference on machine learning, pages

214–223. PMLR, 2017.

[8] Anurag Arnab, Ondrej Miksik, and Philip HS Torr. On the robustness of semantic

segmentation models to adversarial attacks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 888–897, 2018.

[9] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: Circumventing defenses to adversarial examples. In

International conference on machine learning, pages 274–283. PMLR, 2018.

[10] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing

robust adversarial examples. In International conference on machine learning,

pages 284–293, 2018.

[11] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial

training: Improved accuracy tradeoffs in neural nets. 2019.

193

Bibliography

[12] Farhan Baluch and Laurent Itti. Mechanisms of top-down attention. Trends in

neurosciences, 34(4):210–224, 2011.

[13] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning

to generate adversarial examples. arXiv preprint arXiv:1703.09387, 2017.

[14] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS

Torr. Fully-convolutional siamese networks for object tracking. In European

conference on computer vision, pages 850–865. Springer, 2016.

[15] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning

discriminative model prediction for tracking. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 6182–6191, 2019.

[16] Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and DA Forsyth. Unre-

stricted adversarial examples via semantic manipulation. In International Confer-

ence on Learning Representations, 2019.

[17] Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas

Unterthiner, and Andreas Veit. Understanding robustness of transformers for

image classification. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 10231–10241, 2021.

[18] Cenk Bircanoglu. Painter by number. https://www.kaggle.com/cenkbircanoglu/comic-

books-classification, 2017.

[19] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual

object tracking using adaptive correlation filters. In 2010 IEEE computer society

conference on computer vision and pattern recognition, pages 2544–2550. IEEE,

2010.

[20] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adver-

sarial attacks: Reliable attacks against black-box machine learning models. In

International Conference on Learning Representations, 2018.

[21] Tom B Brown and Dandelion Mané. Aurko roy, mart́ın abadi, and justin gilmer.

Adversarial patch. CoRR, abs/1712.09665, 2017.

[22] Yaroslav Bulatov. notmnist dataset. 2011.

[23] Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence,

pages 3740–3747, 2018.

[24] Michael Calonder, Vincent Lepetit, Mustafa Ozuysal, Tomasz Trzcinski, Christoph

Strecha, and Pascal Fua. Brief: Computing a local binary descriptor very fast.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7):1281–1298,

2012.

[25] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:

Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security, pages 3–14. ACM, 2017.

[26] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural

networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,

2017.

[27] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S

194

Bibliography

Liang. Unlabeled data improves adversarial robustness. Advances in Neural

Information Processing Systems, 32, 2019.

[28] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Bala-

subramanian. Grad-cam++: Generalized gradient-based visual explanations for

deep convolutional networks. In 2018 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 839–847. IEEE, 2018.

[29] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and

Jonathan K Su. This looks like that: deep learning for interpretable image recog-

nition. In Advances in Neural Information Processing Systems, pages 8928–8939,

2019.

[30] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo:

Zeroth order optimization based black-box attacks to deep neural networks without

training substitute models. In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, pages 15–26, 2017.

[31] Xuesong Chen, Xiyu Yan, Feng Zheng, Yong Jiang, Shu-Tao Xia, Yong Zhao, and

Rongrong Ji. One-shot adversarial attacks on visual tracking with dual attention.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 10176–10185, 2020.

[32] Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. Destruction and construction

learning for fine-grained image recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 5157–5166, 2019.

[33] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang, and Rongrong Ji.

Siamese box adaptive network for visual tracking. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 6668–6677, 2020.

[34] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, Jinfeng Yi, and Cho-Jui

Hsieh. Query-efficient hard-label black-box attack: An optimization-based approach.

In International Conference on Learning Representation (ICLR), 2019.

[35] Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, and Cho-Jui Hsieh.

Cat: Customized adversarial training for improved robustness. arXiv preprint

arXiv:2002.06789, 2020.

[36] Kyunghyun Cho et al. Retrieval-augmented convolutional neural networks against

adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 11563–11571, 2019.

[37] Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, and Jong-Seok Lee.

Evaluating robustness of deep image super-resolution against adversarial attacks.

In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 303–311, 2019.

[38] Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep filter banks for

texture recognition and segmentation. In Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on, pages 3828–3836. IEEE, 2015.

[39] Moustapha M Cisse, Yossi Adi, Natalia Neverova, and Joseph Keshet. Houdini:

Fooling deep structured visual and speech recognition models with adversarial

examples. Advances in neural information processing systems, 30, 2017.

195

Bibliography

[40] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The

cityscapes dataset for semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 3213–3223,

2016.

[41] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks.

In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 4724–4732, 2019.

[42] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples

with a fast adaptive boundary attack. In International Conference on Machine

Learning, pages 2196–2205. PMLR, 2020.

[43] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness

with an ensemble of diverse parameter-free attacks. In International conference on

machine learning, pages 2206–2216. PMLR, 2020.

[44] Yin Cui, Feng Zhou, Jiang Wang, Xiao Liu, Yuanqing Lin, and Serge Belongie.

Kernel pooling for convolutional neural networks. In Computer Vision and Pattern

Recognition (CVPR), 2017.

[45] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg.

Learning spatially regularized correlation filters for visual tracking. In Proceedings

of the IEEE international conference on computer vision, pages 4310–4318, 2015.

[46] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[47] Emily L Denton and Vighnesh Birodkar. Unsupervised learning of disentangled

representations from video. In NIPS, 2017.

[48] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Mma

training: Direct input space margin maximization through adversarial training. In

International Conference on Learning Representations, 2019.

[49] Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. Advertorch v0. 1: An

adversarial robustness toolbox based on pytorch. arXiv preprint arXiv:1902.07623,

2019.

[50] Mandar Dixit, Si Chen, Dashan Gao, Nikhil Rasiwasia, and Nuno Vasconcelos.

Scene classification with semantic fisher vectors. In Computer Vision and Pattern

Recognition (CVPR), 2015 IEEE Conference on, pages 2974–2983. IEEE, 2015.

[51] Kien Do and Truyen Tran. Theory and evaluation metrics for learning disentangled

representations. In International Conference on Learning Representations, 2019.

[52] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and

Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 9185–9193,

2018.

[53] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to trans-

ferable adversarial examples by translation-invariant attacks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

196

Bibliography

4312–4321, 2019.

[54] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and

Jun Zhu. Efficient decision-based black-box adversarial attacks on face recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7714–7722, 2019.

[55] Yinpeng Dong, Hang Su, Baoyuan Wu, Zhifeng Li, Wei Liu, Tong Zhang, and

Jun Zhu. Efficient decision-based black-box adversarial attacks on face recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019.

[56] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[57] Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz, Yixuan Li, and Dhruv

Mahajan. Defense against adversarial images using web-scale nearest-neighbor

search. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8767–8776, 2019.

[58] Cian Eastwood and Christopher KI Williams. A framework for the quantitative

evaluation of disentangled representations. In 6th International Conference on

Learning Representations, 2018.

[59] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

[60] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes challenge 2007 (voc2007)

results. 2007.

[61] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and

Andrew Zisserman. The pascal visual object classes (voc) challenge. International

journal of computer vision, 88(2):303–338, 2010.

[62] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei

Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world

attacks on deep learning visual classification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1625–1634, 2018.

[63] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia Yu, Hexin Bai, Yong Xu,

Chunyuan Liao, and Haibin Ling. Lasot: A high-quality benchmark for large-scale

single object tracking. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5374–5383, 2019.

[64] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.

Detecting adversarial samples from artifacts. arXiv preprint arXiv:1703.00410,

2017.

[65] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively

trained, multiscale, deformable part model. In Computer Vision and Pattern

Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[66] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-

197

Bibliography

ject detection with discriminatively trained part-based models. IEEE transactions

on pattern analysis and machine intelligence, 32(9):1627–1645, 2010.

[67] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for object

recognition. International journal of computer vision, 61(1):55–79, 2005.

[68] Weiwei Feng, Baoyuan Wu, Tianzhu Zhang, Yong Zhang, and Yongdong Zhang.

Meta-attack: Class-agnostic and model-agnostic physical adversarial attack. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

7787–7796, 2021.

[69] Volker Fischer, Mummadi Chaithanya Kumar, Jan Hendrik Metzen, and Thomas

Brox. Adversarial examples for semantic image segmentation. arXiv preprint

arXiv:1703.01101, 2017.

[70] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm.

In International Conference on Machine Learning (ICML), volume 96, pages

148–156. Bari, Italy, 1996.

[71] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing

Lu. Dual attention network for scene segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3146–3154, 2019.

[72] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to see better: Recurrent

attention convolutional neural network for fine-grained image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017.

[73] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear

pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 317–326, 2016.

[74] Rohit Girdhar and Deva Ramanan. Attentional pooling for action recognition. In

Advances in Neural Information Processing Systems (NIPS), pages 33–44, 2017.

[75] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell.

Actionvlad: Learning spatio-temporal aggregation for action classification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 971–980, 2017.

[76] Josep M Gonfaus, Xavier Boix, Joost Van de Weijer, Andrew D Bagdanov, Joan

Serrat, and Jordi Gonzalez. Harmony potentials for joint classification and segmen-

tation. In 2010 IEEE computer society conference on computer vision and pattern

recognition, pages 3280–3287. IEEE, 2010.

[77] Yunchao Gong, Liwei Wang, Ruiqi Guo, and Svetlana Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features. In European conference

on computer vision, pages 392–407. Springer, 2014.

[78] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

[79] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-

nessing adversarial examples (2014). International conference on Learning Repre-

sentations, 2015.

198

Bibliography

[80] Gaurav Goswami, Nalini Ratha, Akshay Agarwal, Richa Singh, and Mayank Vatsa.

Unravelling robustness of deep learning based face recognition against adversarial

attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[81] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and

Patrick McDaniel. On the (statistical) detection of adversarial examples. arXiv

preprint arXiv:1702.06280, 2017.

[82] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. In Advances in Neural Information

Processing Systems, pages 5767–5777, 2017.

[83] Dongyan Guo, Jun Wang, Ying Cui, Zhenhua Wang, and Shengyong Chen. Siamcar:

Siamese fully convolutional classification and regression for visual tracking. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 6269–6277, 2020.

[84] Qing Guo, Xiaofei Xie, Felix Juefei-Xu, Lei Ma, Zhongguo Li, Wanli Xue, Wei

Feng, and Yang Liu. Spark: Spatial-aware online incremental attack against visual

tracking. arXiv preprint arXiv:1910.08681, 2019.

[85] Ying Guo, Xingxing Wei, Guoqiu Wang, and Bo Zhang. Meaningful adversarial

stickers for face recognition in physical world. arXiv preprint arXiv:2104.06728,

2021.

[86] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In null, pages 1735–1742. IEEE, 2006.

[87] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hyper-

columns for object segmentation and fine-grained localization. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 447–456,

2015.

[88] Jamie Hayes and George Danezis. Learning universal adversarial perturbations

with generative models. In 2018 IEEE Security and Privacy Workshops (SPW),

pages 43–49. IEEE, 2018.

[89] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[90] Xuming He, Richard S Zemel, and Miguel Á Carreira-Perpiñán. Multiscale condi-

tional random fields for image labeling. In Proceedings of the 2004 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR

2004., volume 2, pages II–II. IEEE, 2004.

[91] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their applica-

tions, 13(4):18–28, 1998.

[92] Jan Hendrik Metzen, Mummadi Chaithanya Kumar, Thomas Brox, and Volker

Fischer. Universal adversarial perturbations against semantic image segmentation.

In Proceedings of the IEEE International Conference on Computer Vision, pages

2755–2764, 2017.

[93] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and

199

Bibliography

out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136,

2016.

[94] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-

supervised learning can improve model robustness and uncertainty. Advances in

Neural Information Processing Systems, 32, 2019.

[95] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer,

and Balaji Lakshminarayanan. Augmix: A simple data processing method to

improve robustness and uncertainty. In International Conference on Learning

Representations, 2019.

[96] Sina Honari, Victor Constantin, Helge Rhodin, Mathieu Salzmann, and Pascal Fua.

Unsupervised learning on monocular videos for 3d human pose estimation. arXiv

preprint arXiv:2012.01511, 2020.

[97] Minui Hong, Jinwoo Choi, and Gunhee Kim. Stylemix: Separating content and

style for enhanced data augmentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 14862–14870, 2021.

[98] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William Christmas, Stan Z

Li, and Timothy Hospedales. When face recognition meets with deep learning: an

evaluation of convolutional neural networks for face recognition. In Proceedings of

the IEEE international conference on computer vision workshops, pages 142–150,

2015.

[99] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4700–4708, 2017.

[100] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A large high-diversity

benchmark for generic object tracking in the wild. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2019.

[101] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[102] Nathan Inkawhich, Kevin J Liang, Lawrence Carin, and Yiran Chen. Transferable

perturbations of deep feature distributions. arXiv preprint arXiv:2004.12519, 2020.

[103] Nathan Inkawhich, Kevin J Liang, Jingyang Zhang, Huanrui Yang, Hai Li, and

Yiran Chen. Can targeted adversarial examples transfer when the source and target

models have no label space overlap? In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 41–50, 2021.

[104] Nathan Inkawhich, Wei Wen, Hai Helen Li, and Yiran Chen. Feature space

perturbations yield more transferable adversarial examples. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

7066–7074, 2019.

[105] Catalin Ionescu, Joao Carreira, and Cristian Sminchisescu. Iterated second-order

label sensitive pooling for 3d human pose estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1661–1668, 2014.

[106] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.

200

Bibliography

6m: Large scale datasets and predictive methods for 3d human sensing in natural

environments. IEEE transactions on pattern analysis and machine intelligence,

36(7):1325–1339, 2013.

[107] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image

translation with conditional adversarial networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1125–1134, 2017.

[108] Naman Jain, Sahil Shah, Abhishek Kumar, and Arjun Jain. On the robustness of

human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, pages 29–38, 2019.

[109] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez. Aggregating

local descriptors into a compact image representation. In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3304–3311. IEEE,

2010.

[110] Herve Jegou, Florent Perronnin, Matthijs Douze, Jorge Sánchez, Patrick Perez, and

Cordelia Schmid. Aggregating local image descriptors into compact codes. IEEE

transactions on pattern analysis and machine intelligence, 34(9):1704–1716, 2012.

[111] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks

for human action recognition. IEEE transactions on pattern analysis and machine

intelligence, 35(1):221–231, 2012.

[112] Shuai Jia, Yibing Song, Chao Ma, and Xiaokang Yang. Iou attack: Towards tempo-

rally coherent black-box adversarial attack for visual object tracking. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

6709–6718, 2021.

[113] Yunhan Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Zhenyu Zhong, and Tao Wei.

Fooling detection alone is not enough: First adversarial attack against multiple

object tracking. arXiv preprint arXiv:1905.11026, 2019.

[114] Albert Jimenez, Jose M Alvarez, and Xavier Giro-i Nieto. Class-weighted con-

volutional features for visual instance search. British Media Vision Conference

(BMVC), 2017.

[115] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Iain Matthews, Takeo Kanade,

Shohei Nobuhara, and Yaser Sheikh. Panoptic studio: A massively multiview system

for social motion capture. In Proceedings of the IEEE International Conference on

Computer Vision, pages 3334–3342, 2015.

[116] Ameya Joshi, Amitangshu Mukherjee, Soumik Sarkar, and Chinmay Hegde. Se-

mantic adversarial attacks: Parametric transformations that fool deep classifiers.

In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 4773–4783, 2019.

[117] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing.

arXiv preprint arXiv:1803.06373, 2018.

[118] Sanjay Kariyappa and Moinuddin K Qureshi. Improving adversarial robustness of

ensembles with diversity training. arXiv preprint arXiv:1901.09981, 2019.

[119] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural

201

Bibliography

networks. In Proceedings of the IEEE conference on Computer Vision and Pattern

Recognition, pages 1725–1732, 2014.

[120] Valentin Khrulkov and Ivan Oseledets. Art of singular vectors and universal

adversarial perturbations. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 8562–8570, 2018.

[121] Hamed Kiani Galoogahi, Terence Sim, and Simon Lucey. Multi-channel correlation

filters. In Proceedings of the IEEE international conference on computer vision,

pages 3072–3079, 2013.

[122] Hamed Kiani Galoogahi, Terence Sim, and Simon Lucey. Correlation filters with

limited boundaries. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4630–4638, 2015.

[123] KangGeon Kim, Zhenheng Yang, Iacopo Masi, Ramakant Nevatia, and Gerard

Medioni. Face and body association for video-based face recognition. In 2018 IEEE

Winter Conference on Applications of Computer Vision (WACV), pages 39–48.

IEEE, 2018.

[124] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

International Conference on Learning Representations (ICLR, 2015.

[125] Jan J Koenderink and Andrea J Van Doorn. The structure of locally orderless

images. International Journal of Computer Vision, 31(2-3):159–168, 1999.

[126] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order potentials for enforcing

label consistency. International Journal of Computer Vision, 82(3):302–324, 2009.

[127] Shu Kong and Charless Fowlkes. Low-rank bilinear pooling for fine-grained classi-

fication. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 365–374, 2017.

[128] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo.

Deep neural decision forests. In Proceedings of the IEEE international conference

on computer vision, pages 1467–1475, 2015.

[129] Tom Koren, Lior Talker, Michael Dinerstein, and Roy J Jevnisek. Consistent

semantic attacks on optical flow. arXiv preprint arXiv:2111.08485, 2021.

[130] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Simi-

larity of neural network representations revisited. In International Conference on

Machine Learning, pages 3519–3529. PMLR, 2019.

[131] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected

crfs with gaussian edge potentials. In Advances in neural information processing

systems, pages 109–117, 2011.

[132] Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei. Fine-grained recog-

nition without part annotations. In Computer Vision and Pattern Recognition

(CVPR), 2015 IEEE Conference on, pages 5546–5555. IEEE, 2015.

[133] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations

for fine-grained categorization. In Proceedings of the IEEE international conference

on computer vision workshops, pages 554–561, 2013.

[134] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder,

Luka Cehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrahman

202

Bibliography

Eldesokey, et al. The sixth visual object tracking vot2018 challenge results. In

Proceedings of the European Conference on Computer Vision (ECCV), pages 0–0,

2018.

[135] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009.

[136] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[137] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the

physical world. arXiv preprint arXiv:1607.02533, 2016.

[138] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning

at scale. arXiv preprint arXiv:1611.01236, 2016.

[139] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 350(6266):1332–

1338, 2015.

[140] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[141] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[142] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework

for detecting out-of-distribution samples and adversarial attacks. In Advances in

Neural Information Processing Systems, pages 7167–7177, 2018.

[143] Kuan-Hui Lee and Jenq-Neng Hwang. On-road pedestrian tracking across multiple

driving recorders. IEEE Transactions on Multimedia, 17(9):1429–1438, 2015.

[144] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, and Junjie Yan.

Siamrpn++: Evolution of siamese visual tracking with very deep networks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4282–4291, 2019.

[145] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu. High performance

visual tracking with siamese region proposal network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 8971–8980, 2018.

[146] Li-Jia Li, Hao Su, Li Fei-Fei, and Eric P Xing. Object bank: A high-level image

representation for scene classification & semantic feature sparsification. In Advances

in neural information processing systems, pages 1378–1386, 2010.

[147] Maosen Li, Cheng Deng, Tengjiao Li, Junchi Yan, Xinbo Gao, and Heng Huang.

Towards transferable targeted attack. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 641–649, 2020.

[148] Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, and Alan L

Yuille. Regional homogeneity: Towards learning transferable universal adversarial

perturbations against defenses. arXiv preprint arXiv:1904.00979, 2019.

[149] Yunsheng Li, Mandar Dixit, and Nuno Vasconcelos. Deep scene image classification

203

Bibliography

with the mfafvnet. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5746–5754, 2017.

[150] Yiming Li, Congcong Wen, Felix Juefei-Xu, and Chen Feng. Fooling lidar per-

ception via adversarial trajectory perturbation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 7898–7907, 2021.

[151] Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-

distribution image detection in neural networks. arXiv preprint arXiv:1706.02690,

2017.

[152] Siyuan Liang, Xingxing Wei, Siyuan Yao, and Xiaochun Cao. Efficient adversarial

attacks for visual object tracking. arXiv preprint arXiv:2008.00217, 2020.

[153] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun

Zhu. Defense against adversarial attacks using high-level representation guided

denoiser. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1778–1787, 2018.

[154] Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns. In British

Media Vision Conference (BMVC), 2017.

[155] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for

fine-grained visual recognition. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1449–1457, 2015.

[156] Krzysztof Lis, Krishna Nakka, Mathieu Salzmann, and Pascal Fua. Detecting the

unexpected via image resynthesis. arXiv preprint arXiv:1904.07595, 2019.

[157] Lingqiao Liu, Peng Wang, Chunhua Shen, Lei Wang, Anton Van Den Hengel, Chao

Wang, and Heng Tao Shen. Compositional model based fisher vector coding for

image classification. IEEE transactions on pattern analysis and machine intelligence,

39(12):2335–2348, 2017.

[158] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[159] Wei Liu, Andrew Rabinovich, and Alexander C Berg. Parsenet: Looking wider to

see better. arXiv preprint arXiv:1506.04579, 2015.

[160] Xiao Liu, Spyridon Thermos, Gabriele Valvano, Agisilaos Chartsias, Alison O’Neil,

and Sotirios A Tsaftaris. Measuring the biases and effectiveness of content-style

disentanglement. In Proceedings of the British Media for VIsion Conference, 2021.

[161] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran Chen. Dpatch:

An adversarial patch attack on object detectors. AAAI Workshop on Artificial

Intelligence Safety, 2019.

[162] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable

adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770,

2016.

[163] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3431–3440, 2015.

[164] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised

204

Bibliography

domain adaptation with residual transfer networks. Advances in neural information

processing systems, 29, 2016.

[165] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

[166] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about

adversarial examples in object detection in autonomous vehicles. arXiv preprint

arXiv:1707.03501, 2017.

[167] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant

Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. Characteriz-

ing adversarial subspaces using local intrinsic dimensionality. arXiv preprint

arXiv:1801.02613, 2018.

[168] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In

International Conference on Learning Representations, 2018.

[169] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representa-

tions by inverting them. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 5188–5196, 2015.

[170] Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural

networks using natural pre-images. International Journal of Computer Vision,

120(3):233–255, 2016.

[171] Kaleel Mahmood, Rigel Mahmood, and Marten Van Dijk. On the robustness of

vision transformers to adversarial examples. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 7838–7847, 2021.

[172] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi.

Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[173] Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray.

Metric learning for adversarial robustness. In Advances in Neural Information

Processing Systems, pages 478–489, 2019.

[174] Julieta Martinez, Rayat Hossain, Javier Romero, and James J Little. A simple

yet effective baseline for 3d human pose estimation. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2640–2649, 2017.

[175] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Oleksandr Sotnychenko,

Weipeng Xu, and Christian Theobalt. Monocular 3d human pose estimation in

the wild using improved cnn supervision. In 2017 international conference on 3D

vision (3DV), pages 506–516. IEEE, 2017.

[176] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Moham-

mad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt.

Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM

Transactions on Graphics (TOG), 36(4):1–14, 2017.

[177] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On

detecting adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017.

[178] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

205

Bibliography

[179] Mohammad Moghimi, Serge J Belongie, Mohammad J Saberian, Jian Yang, Nuno

Vasconcelos, and Li-Jia Li. Boosted convolutional neural networks. In British

Media Vision Conference (BMVC), 2016.

[180] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

Universal adversarial perturbations. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1765–1773, 2017.

[181] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard,

and Stefano Soatto. Analysis of universal adversarial perturbations. arXiv preprint

arXiv:1705.09554, 2017.

[182] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:

a simple and accurate method to fool deep neural networks. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2574–2582,

2016.

[183] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. Fast feature fool: A

data independent approach to universal adversarial perturbations. British Media

Vision Conference, 2017.

[184] Konda Reddy Mopuri, Phani Krishna Uppala, and R Venkatesh Babu. Ask, acquire,

and attack: Data-free uap generation using class impressions. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 19–34, 2018.

[185] Matthias Mueller, Neil Smith, and Bernard Ghanem. A benchmark and simulator

for uav tracking. In European conference on computer vision, pages 445–461.

Springer, 2016.

[186] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen,

and Ling Shao. Adversarial defense by restricting the hidden space of deep neural

networks. In Proceedings of the IEEE International Conference on Computer

Vision, pages 3385–3394, 2019.

[187] Aamir Mustafa, Salman H Khan, Munawar Hayat, Roland Goecke, Jianbing Shen,

and Ling Shao. Deeply supervised discriminative learning for adversarial defense.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[188] Krishna Kanth Nakka and Mathieu Salzmann. Deep attentional structured repre-

sentation learning for visual recognition. British Media Vision Conference (BMVC)

2018, 2018.

[189] Nina Narodytska and Shiva Kasiviswanathan. Simple black-box adversarial attacks

on deep neural networks. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pages 1310–1318. IEEE, 2017.

[190] Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and

Fatih Porikli. On generating transferable targeted perturbations. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 7708–7717,

2021.

[191] Muzammal Naseer, Salman Khan, Muhammad Haris Khan, Fahad Khan, and

Fatih Porikli. Cross-domain transferability of adversarial perturbations. In 33rd

Conference on Neural Information Processing Systems (NeurIPS), volume 32, 2019.

[192] Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Shahbaz Khan,

206

Bibliography

and Fatih Porikli. On improving adversarial transferability of vision transformers.

International Conference of Learning Representations (ICLR, 2022.

[193] Vidhya Navalpakkam and Laurent Itti. An integrated model of top-down and

bottom-up attention for optimizing detection speed. In 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06),

pages 2049–2056. IEEE, 2006.

[194] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. In NIPS

workshop on deep learning and unsupervised feature learning, 2011.

[195] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.

Synthesizing the preferred inputs for neurons in neural networks via deep generator

networks. In Advances in neural information processing systems, pages 3387–3395,

2016.

[196] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 427–436,

2015.

[197] Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding. Efficient and robust feature

selection via joint l2, 1-norms minimization. In Advances in neural information

processing systems, pages 1813–1821, 2010.

[198] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial

robustness via promoting ensemble diversity. In International Conference on

Machine Learning, pages 4970–4979. PMLR, 2019.

[199] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples. arXiv

preprint arXiv:1605.07277, 2016.

[200] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,

and Ananthram Swami. Practical black-box attacks against machine learning. In

Proceedings of the 2017 ACM on Asia conference on computer and communications

security, pages 506–519, 2017.

[201] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings.

In 2016 IEEE European symposium on security and privacy (EuroS&P), pages

372–387. IEEE, 2016.

[202] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

Distillation as a defense to adversarial perturbations against deep neural networks.

In 2016 IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE,

2016.

[203] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition.

2019.

[204] Nikolaos Passalis and Anastasios Tefas. Learning bag-of-features pooling for deep

convolutional neural networks. In Proceedings of the IEEE International Conference

on Computer Vision, pages 5755–5763, 2017.

207

Bibliography

[205] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in pytorch. 2017.

[206] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. Advances in

neural information processing systems, 32:8026–8037, 2019.

[207] Genevieve Patterson and James Hays. Sun attribute database: Discovering, annotat-

ing, and recognizing scene attributes. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pages 2751–2758. IEEE, 2012.

[208] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Daniilidis.

Coarse-to-fine volumetric prediction for single-image 3d human pose. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7025–7034,

2017.

[209] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpanis, and Kostas Daniilidis.

Harvesting multiple views for marker-less 3d human pose annotations. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 6988–6997,

2017.

[210] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher

kernel for large-scale image classification. In European conference on computer

vision, pages 143–156. Springer, 2010.

[211] Alin-Ionut Popa, Mihai Zanfir, and Cristian Sminchisescu. Deep multitask ar-

chitecture for integrated 2d and 3d human sensing. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 6289–6298, 2017.

[212] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative

adversarial perturbations. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4422–4431, 2018.

[213] Zhongang Qi, Saeed Khorram, and Fuxin Li. Visualizing deep networks by opti-

mizing with integrated gradients. In Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, volume 2, 2019.

[214] Haonan Qiu, Chaowei Xiao, Lei Yang, Xinchen Yan, Honglak Lee, and Bo Li.

Semanticadv: Generating adversarial examples via attribute-conditioned image

editing. In European Conference on Computer Vision, pages 19–37. Springer, 2020.

[215] Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In Computer

Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages

413–420. IEEE, 2009.

[216] Pedro Quelhas, Florent Monay, J-M Odobez, Daniel Gatica-Perez, Tinne Tuytelaars,

and Luc Van Gool. Modeling scenes with local descriptors and latent aspects. In

Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on,

volume 1, pages 883–890. IEEE, 2005.

[217] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony

Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al. Chexnet:

Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv

208

Bibliography

preprint arXiv:1711.05225, 2017.

[218] Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J Black. Attacking optical

flow. In Proceedings of the IEEE International Conference on Computer Vision,

pages 2404–2413, 2019.

[219] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. IEEE transactions on

pattern analysis and machine intelligence, 39(6):1137–1149, 2016.

[220] Shaoqing Ren, Kaiming He, Ross B Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In NIPS, 2015.

[221] Helge Rhodin, Victor Constantin, Isinsu Katircioglu, Mathieu Salzmann, and Pascal

Fua. Neural scene decomposition for multi-person motion capture. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

7703–7713, 2019.

[222] Helge Rhodin, Mathieu Salzmann, and Pascal Fua. Unsupervised geometry-aware

representation for 3d human pose estimation. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 750–767, 2018.

[223] Gregory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. Lcr-net: Localization-

classification-regression for human pose. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3433–3441, 2017.

[224] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medical

image computing and computer-assisted intervention, pages 234–241. Springer,

2015.

[225] Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness

and interpretability of deep neural networks by regularizing their input gradients.

In Thirty-second AAAI conference on artificial intelligence, 2018.

[226] Ueli Rutishauser, Dirk Walther, Christof Koch, and Pietro Perona. Is bottom-

up attention useful for object recognition? In Computer Vision and Pattern

Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society

Conference on, volume 2, pages II–II. IEEE, 2004.

[227] Aniruddha Saha, Akshayvarun Subramanya, Koninika Patil, and Hamed Pirsiavash.

Adversarial patches exploiting contextual reasoning in object detection. Conference

on Computer Vision and Pattern Recognition Workshops, 2020.

[228] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting

classifiers against adversarial attacks using generative models. In International

Conference on Learning Representations, 2018.

[229] Jorge Sanchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image

classification with the fisher vector: Theory and practice. International journal of

computer vision, 105(3):222–245, 2013.

[230] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Alek-

sander Madry. Adversarially robust generalization requires more data. Advances

in neural information processing systems, 31, 2018.

[231] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

209

Bibliography

embedding for face recognition and clustering. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 815–823, 2015.

[232] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the IEEE international

conference on computer vision, pages 618–626, 2017.

[233] Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael

Cogswell, Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that?

arXiv preprint arXiv:1611.07450, 2016.

[234] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,

Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial

training for free! In Advances in Neural Information Processing Systems, pages

3353–3364, 2019.

[235] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Adversarial

generative nets: Neural network attacks on state-of-the-art face recognition. arXiv

preprint arXiv:1801.00349, 2(3), 2017.

[236] Marcel Simon, Yang Gao, Trevor Darrell, Joachim Denzler, and Erik Rodner.

Generalized orderless pooling performs implicit salient matching. In Proceedings of

the IEEE international conference on computer vision, pages 4960–4969, 2017.

[237] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In Internal Conference on Learning Representations

(ICLR), pages 1409-1556, 2015.

[238] Saurabh Singh, Abhinav Gupta, and Alexei A Efros. Unsupervised discovery of

mid-level discriminative patches. In Computer Vision–European Conference on

Computer Vision (ECCV) 2012, pages 73–86. Springer, 2012.

[239] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to

object matching in videos. In null, page 1470. IEEE, 2003.

[240] Ibrahim Sobh, Ahmed Hamed, Varun Ravi Kumar, and Senthil Yogamani. Adver-

sarial attacks on multi-task visual perception for autonomous driving. Journal of

Imaging Science and Technology, 65(6):60408–1, 2021.

[241] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman.

Pixeldefend: Leveraging generative models to understand and defend against

adversarial examples. In International Conference on Learning Representations,

2018.

[242] Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted

adversarial examples with generative models.

[243] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for

fooling deep neural networks. IEEE Transactions on Evolutionary Computation,

23(5):828–841, 2019.

[244] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain

adaptation. In European conference on computer vision, pages 443–450. Springer,

2016.

[245] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

210

Bibliography

Wojna. Rethinking the inception architecture for computer vision. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2818–2826,

2016.

[246] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv

preprint arXiv:1312.6199, 2013.

[247] Peng Tang, Xinggang Wang, Baoguang Shi, Xiang Bai, Wenyu Liu, and Zhuowen

Tu. Deep fishernet for object classification. arXiv preprint arXiv:1608.00182, 2016.

[248] Bugra Tekin, Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Learning

to fuse 2d and 3d image cues for monocular body pose estimation. In Proceedings

of the IEEE International Conference on Computer Vision, pages 3941–3950, 2017.

[249] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance

cameras: adversarial patches to attack person detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

0–0, 2019.

[250] Denis Tome, Chris Russell, and Lourdes Agapito. Lifting from the deep: Con-

volutional 3d pose estimation from a single image. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2500–2509, 2017.

[251] Lorenzo Torresani, Martin Szummer, and Andrew Fitzgibbon. Efficient object

category recognition using classemes. In European conference on computer vision,

pages 776–789. Springer, 2010.

[252] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple

perturbations. Advances in Neural Information Processing Systems, 32, 2019.

[253] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On

adaptive attacks to adversarial example defenses. Advances in Neural Information

Processing Systems, 33:1633–1645, 2020.

[254] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.

International Conference on Learning Representations (ICLR), 2018.

[255] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,

and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In

International Conference on Learning Representations, 2018.

[256] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.

Stealing machine learning models via prediction apis. In 25th {USENIX} Security

Symposium ({USENIX} Security 16), pages 601–618, 2016.

[257] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and

Aleksander Madry. Robustness may be at odds with accuracy. International

Conference on Learning Representations (ICLR), 2018.

[258] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman

Panchanathan. Deep hashing network for unsupervised domain adaptation. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5018–5027, 2017.

[259] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.

211

Bibliography

The caltech-ucsd birds-200-2011 dataset. 2011.

[260] Dequan Wang, Zhiqiang Shen, Jie Shao, Wei Zhang, Xiangyang Xue, and Zheng

Zhang. Multiple granularity descriptors for fine-grained categorization. In Computer

Vision (ICCV), 2015 IEEE International Conference on, pages 2399–2406. IEEE,

2015.

[261] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xi-

aogang Wang, and Xiaoou Tang. Residual attention network for image classification.

arXiv preprint arXiv:1704.06904, 2017.

[262] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast

online object tracking and segmentation: A unifying approach. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 1328–1338,

2019.

[263] Yaming Wang, Jonghyun Choi, Vlad I Morariu, and Larry S Davis. Mining

discriminative triplets of patches for fine-grained classification. In Computer Vision

and Pattern Recognition (CVPR), 2016.

[264] Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan

Gu. On the convergence and robustness of adversarial training. In International

Conference on Machine Learning (ICML), pages 6586–6595. PMLR, 2019.

[265] Yaming Wang, Vlad I Morariu, and Larry S Davis. Learning a discriminative

filter bank within a cnn for fine-grained recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 4148–4157, 2018.

[266] Zhe Wang, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learnable histogram:

Statistical context features for deep neural networks. In European Conference on

Computer Vision, pages 246–262. Springer, 2016.

[267] Xiu-Shen Wei, Chen-Wei Xie, Jianxin Wu, and Chunhua Shen. Mask-cnn: Local-

izing parts and selecting descriptors for fine-grained bird species categorization.

Pattern Recognition, 76:704–714, 2018.

[268] Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein, and

Yu-Gang Jiang. Towards transferable adversarial attacks on vision transformers.

arXiv preprint arXiv:2109.04176, 2021.

[269] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning

structured sparsity in deep neural networks. In Advances in neural information

processing systems, pages 2074–2082, 2016.

[270] Rey Reza Wiyatno and Anqi Xu. Physical adversarial textures that fool visual

object tracking. In Proceedings of the IEEE International Conference on Computer

Vision, pages 4822–4831, 2019.

[271] Alex Wong, Safa Cicek, and Stefano Soatto. Targeted adversarial perturbations for

monocular depth prediction. Advances in neural information processing systems,

33:8486–8497, 2020.

[272] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting

adversarial training. International Conference on Learning Representations (ICLR),

2020.

[273] Ruobing Wu, Baoyuan Wang, Wenping Wang, and Yizhou Yu. Harvesting discrim-

212

Bibliography

inative meta objects with deep cnn features for scene classification. In Computer

Vision (ICCV), 2015 IEEE International Conference on, pages 1287–1295. IEEE,

2015.

[274] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 2411–2418, 2013.

[275] Zuxuan Wu, Yu-Gang Jiang, Jun Wang, Jian Pu, and Xiangyang Xue. Exploring

inter-feature and inter-class relationships with deep neural networks for video clas-

sification. In Proceedings of the 22nd ACM international conference on Multimedia,

pages 167–176, 2014.

[276] Chaowei Xiao, Ruizhi Deng, Bo Li, Taesung Lee, Benjamin Edwards, Jinfeng

Yi, Dawn Song, Mingyan Liu, and Ian Molloy. Advit: Adversarial frames identi-

fier based on temporal consistency in videos. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 3968–3977, 2019.

[277] Chaowei Xiao, Ruizhi Deng, Bo Li, Fisher Yu, Mingyan Liu, and Dawn Song.

Characterizing adversarial examples based on spatial consistency information for

semantic segmentation. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 217–234, 2018.

[278] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn

Song. Generating adversarial examples with adversarial networks. arXiv preprint

arXiv:1801.02610, 2018.

[279] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,

2017.

[280] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba.

Sun database: Large-scale scene recognition from abbey to zoo. In Computer vision

and pattern recognition (CVPR), 2010 IEEE conference on, pages 3485–3492. IEEE,

2010.

[281] Tianjun Xiao, Yichong Xu, Kuiyuan Yang, Jiaxing Zhang, Yuxin Peng, and Zheng

Zhang. The application of two-level attention models in deep convolutional neural

network for fine-grained image classification. In Computer Vision and Pattern

Recognition (CVPR), 2015 IEEE Conference on, pages 842–850. IEEE, 2015.

[282] Zihao Xiao, Xianfeng Gao, Chilin Fu, Yinpeng Dong, Wei Gao, Xiaolu Zhang,

Jun Zhou, and Jun Zhu. Improving transferability of adversarial patches on face

recognition with generative models. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 11845–11854, 2021.

[283] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating

adversarial effects through randomization. In International Conference on Learning

Representations, 2018.

[284] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan

Yuille. Adversarial examples for semantic segmentation and object detection. In

Proceedings of the IEEE International Conference on Computer Vision, pages

1369–1378, 2017.

213

Bibliography

[285] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming

He. Feature denoising for improving adversarial robustness. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

501–509, 2019.

[286] Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz

Erdogmus, Yanzhi Wang, and Xue Lin. Structured adversarial attack: Towards

general implementation and better interpretability. In International Conference on

Learning Representations, 2018.

[287] Bin Yan, Dong Wang, Huchuan Lu, and Xiaoyun Yang. Cooling-shrinking attack:

Blinding the tracker with imperceptible noises. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 990–999, 2020.

[288] Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew

Gardner, Andrew Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge:

diversifying vulnerabilities for enhanced robust generation of ensembles. Advances

in Neural Information Processing Systems, 33:5505–5515, 2020.

[289] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Max Panoff, Tsung-Yi Ho, and Yier

Jin. Robust roadside physical adversarial attack against deep learning in lidar

perception modules. In Proceedings of the 2021 ACM Asia Conference on Computer

and Communications Security, pages 349–362, 2021.

[290] Minghao Yin, Yongbing Zhang, Xiu Li, and Shiqi Wang. When deep fool meets

deep prior: Adversarial attack on super-resolution network. In Proceedings of the

26th ACM international conference on Multimedia, pages 1930–1938, 2018.

[291] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 472–480, 2017.

[292] Kaicheng Yu and Mathieu Salzmann. Statistically-motivated second-order pooling.

In Proceedings of the European Conference on Computer Vision (ECCV), pages

600–616, 2018.

[293] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

68(1):49–67, 2006.

[294] Zheng Yuan, Jie Zhang, Yunpei Jia, Chuanqi Tan, Tao Xue, and Shiguang Shan.

Meta gradient adversarial attack. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 7748–7757, 2021.

[295] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol

Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep networks

for video classification. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4694–4702, 2015.

[296] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with

localizable features. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 6023–6032, 2019.

[297] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

214

Bibliography

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[298] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene

crowd counting via deep convolutional neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 833–841, 2015.

[299] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. In International Conference on Learning

Representations, 2018.

[300] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang,

Ambrish Tyagi, and Amit Agrawal. Context encoding for semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 7151–7160, 2018.

[301] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention

generative adversarial networks. In International conference on machine learning,

pages 7354–7363. PMLR, 2019.

[302] Han Zhang, Tao Xu, Mohamed Elhoseiny, Xiaolei Huang, Shaoting Zhang, Ahmed

Elgammal, and Dimitris Metaxas. Spda-cnn: Unifying semantic part detection and

abstraction for fine-grained recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1143–1152, 2016.

[303] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui,

and Michael I Jordan. Theoretically principled trade-off between robustness and

accuracy. International Conference on Machine Learning (ICML), 2019.

[304] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff.

Top-down neural attention by excitation backprop. In European Conference on

Computer Vision, pages 543–559. Springer, 2016.

[305] Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and

Mohan Kankanhalli. Attacks which do not kill training make adversarial learning

stronger. In International conference on machine learning, pages 11278–11287.

PMLR, 2020.

[306] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based r-cnns

for fine-grained category detection. In European conference on computer vision,

pages 834–849. Springer, 2014.

[307] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional

neural networks. arXiv preprint arXiv:1710.00935, 2(3):5, 2017.

[308] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and Weiming Hu. Ocean:

Object-aware anchor-free tracking. In Computer Vision–ECCV 2020: 16th European

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages

771–787. Springer, 2020.

[309] Ziqi Zhang, Xinge Zhu, Yingwei Li, Xiangqun Chen, and Yao Guo. Adversarial

attacks on monocular depth estimation. arXiv preprint arXiv:2003.10315, 2020.

[310] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.

Pyramid scene parsing network. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2881–2890, 2017.

215

Bibliography

[311] Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi, Chen Change Loy, Dahua

Lin, and Jiaya Jia. Psanet: Point-wise spatial attention network for scene parsing.

In Proceedings of the European Conference on Computer Vision (ECCV), pages

267–283, 2018.

[312] Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial

examples. In International Conference on Learning Representations, 2018.

[313] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. On success and simplicity: A

second look at transferable targeted attacks. Advances in Neural Information

Processing Systems, 34, 2021.

[314] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning multi-attention

convolutional neural network for fine-grained image recognition. In International

Conference on Computer Vision, 2017.

[315] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash.

Efficient adversarial training with transferable adversarial examples. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

1181–1190, 2020.

[316] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Learning deep features for discriminative localization. In Computer Vision and

Pattern Recognition (CVPR), 2016 IEEE Conference on, pages 2921–2929. IEEE,

2016.

[317] Wen Zhou, Xin Hou, Yongjun Chen, Mengyun Tang, Xiangqi Huang, Xiang Gan,

and Yong Yang. Transferable adversarial perturbations. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 452–467, 2018.

[318] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-

aware siamese networks for visual object tracking. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 101–117, 2018.

216

Krishna Kanth Nakka krishnakanthnakka.github.io

Interests

Computer Vision, Machine Learning and Deep Learning

Education

Ecole Polytechnique Fédérale de Lausanne (EPFL) Sep 2017 - Aug 2022

Ph.D. in Computer Science
Advisors: Dr. Mathieu Salzmann and Prof. Pascal Fua

Title: Understanding Deep Neural Networks using Adversarial Attacks
My thesis focuses on the strengths and weaknesses of deep neural networks in safety-critical applica-
tions. It explores the topics of interpretable models, transfer-based black-box attacks, attack detection,
adversarial defenses, anomaly detection, and disentangled representations.

Indian Institute of Technology Kharagpur Jun 2010 - May 2015

M.Tech with specialization in Signal Processing and Instrumentation,
B.Tech (Honours) in Electrical Engineering (5 year Dual Degree) GPA: 8.89/10.0

Awards and Honours

EDIC PhD Fellowship (2017) to pursue first year of doctoral studies at EPFL
Mitacs Globalink Scholarship to participate in summer internship at University of Alberta
University of Queensland Summer Research Scholarship to conduct research at CAI
MCM Scholarship for 4 years (2010-14) for excellent academic performance at IIT Kharagpur

Work Experience

Samsung R&D Institute, Bangalore Sep 2015 - July 2017

TL: Dr. Shankar Venkatesan, Advanced Technology Lab

Prototyped a joint reflection-removal and super-resolution of a video sequence.

University of Alberta, Edmonton May 2014 - July 2014

Under: Prof. Nilanjan Ray, Computing Science Department

Evaluated large scale image retrieval methods using product quantization of sub-codebooks.

University of Queensland, Australia Nov 2013 - Jan 2014

Under: Prof. Jeffrey Harmer, Center for Advanced Imaging Institute

Developed an exponentially decaying non-uniform sampling scheme to shorten acquisition time in
spectroscopy experiments.

Philips Research Asia, Bangalore May 2013 - July 2013

Under: Dr. Shankar M Venkatesan

Implemented a part-based human detection model using Adaboost of weak SVM classifiers.

1 of 3

217

Publications And Preprints

1. Understanding Pose and Appearance Disentanglement in 3D Human Pose Estimation
Krishna Kanth Nakka and Mathieu Salzmann,
Under review

2. Learning Transferable Adversarial Perturbations
Krishna Kanth Nakka and Mathieu Salzmann,
Neural Information and Processing Systems, NeurIPS 2021

3. Universal, Transferable Adversarial Attacks for Visual Object Trackers
Krishna Kanth Nakka and Mathieu Salzmann,
Under review

4. Towards Robust Fine-grained Recognition by Maximal Separation of Discriminative
Features
Krishna Kanth Nakka and Mathieu Salzmann,
Asian Conference on Computer Vision (ACCV), 2020.

5. Indirect Local Attacks for Context-aware Semantic Segmentation Networks
Krishna Kanth Nakka and Mathieu Salzmann,
European Conference on Computer Vision (ECCV) Spotlight 2020. (Top 5%)

6. Detecting the Unexpected via Image Resynthesis
Krzysztof Lis, Krishna Kanth Nakka, Pascal Fua, Mathieu Salzmann,
International Conference on Computer Vision (ICCV), 2019.

7. Interpretable BoW Networks for Adversarial Example Detection
Krishna Kanth Nakka and Mathieu Salzmann,
Explainable and Interpretable AI workshop, ICCV 2019.

8. Deep Attentional Structured Representation Learning for Visual Recognition
Krishna Kanth Nakka and Mathieu Salzmann,
British Media Vision Conference (BMVC), 2018.

9. Deep learning based fence segmentation and removal from an image using a video
sequence
Jonna S, Nakka KK, Sahay RR,
International Workshop on Video Segmentation, ECCV 2016. Oral.

10. Detection and removal of fence occlusions in an image using a video of the
static/dynamic scene
Jonna S, Nakka KK, Khasare VS, Sahay RR, Kankanhalli MS,
Journal of Optical Society of America (JOSA) A. 2016.

11. My camera can see through fences: A deep learning approach for image de-fencing
Jonna S, Nakka KK, Sahay RR,
Asian Conference on Pattern Recognition ACPR, 2015.

12. 3D-to-2D mapping for user interactive segmentation of human leg muscles from MRI
data
Ray N, Mukherjee S, Nakka KK, Acton ST, Blanker SS,
Signal and Information Processing, GlobalSIP 2014.

2 of 3

218

13. Non-uniform sampling in EPR: optimizing data acquisition for Hyscore spectroscopy
Nakka KK, YA Tesiram, IM Brereton, M Mobli and JR Harmer,
Physical Chemistry Chemical Physics, 2014.

Skills

• Languages: Proficient in Python. Familiar with C/C++
• Softwares: PyTorch, Tensorflow, Caffe

References

• Dr. Mathieu Salzmann. email: mathieu.salzmann@epfl.ch
• Prof. Pascal Fua. email: pascal.fua@epfl.ch

3 of 3

219

	Acknowledgements
	Abstract (English/Français)
	Publications
	Contents
	Introduction
	Background
	Contributions

	Attention-Aware Structured Representation Learning
	Introduction
	Related Work
	Method
	Structured Representation Module
	Attention Module
	Attention-aware Feature Aggregation

	Experiments
	Datasets
	Implementation Details
	Results
	Failure Cases
	Ablation Study
	Attentional Global Average Pooling

	Additional Qualitative Results
	Conclusion

	Semantic Dictionaries for Adversarial Example Detection
	Introduction
	Related Work
	Method
	Interpretable BoW Networks
	Detecting Adversarial Examples

	Experiments
	Visualizing BoW Codewords
	 Detecting Adversarial Samples
	Detecting Out-of-distribution Samples
	Architectures
	Additional Visualizations

	Conclusion

	Towards Robust Fine-grained Recognition by Maximal Separation of Discriminative Features
	Introduction
	Related Work
	Interpreting Adversarial Attacks
	Method
	Architecture
	Discriminative Feature Separation

	Experiments
	Experimental Setting
	Results on CUB 200
	Results on Stanford Cars
	Training Details
	Qualitative Results

	Conclusion

	Indirect Local Attacks for Context-aware Semantic Segmentation Networks
	Introduction
	Related Work
	Indirect Local Segmentation Attacks
	Indirect Local Attacks
	Adaptive Indirect Local Attacks
	Universal Local Attacks
	Adversarial Attack Detection

	Experiments
	Indirect Local Attacks
	Adaptive Indirect Local Attacks
	Universal Local Attacks

	Attack Detection
	Image-Level Detecton
	Pixel-Level Detection
	Implementation Details

	Additional Results
	Conclusion

	Universal, Transferable Adversarial Perturbations for Visual Object Trackers
	Introduction
	Related Work
	Methodology
	Overall Pipeline
	Training the Generator
	Universal Perturbations: Inference time

	Experiments
	Results
	Ablation Studies
	Effect of Hyperparameters

	Additional Qualitative Results
	Conclusion

	Learning Transferable Adversarial Perturbations
	Introduction
	Related Work
	Methodolgy
	Experiments
	Transferability to Unknown Target Model
	Transferability to Unknown Target Data
	Extreme Cross-Domain Transferability
	Transferability to Robust Models
	Cross-Task Transferability Analysis
	Additional Analysis
	Additional Quantitative Results
	Additional Visualizations
	Ablation Study

	Conclusion

	Understanding Pose and Appearance Disentanglement in 3D Human Pose Estimation
	Introduction
	Related Work
	Disentangled Human Pose Estimation Networks
	Training Details
	Disentanglement w.r.t. the Self-Supervised Network
	Effect of the Appearance Vector on Synthesized Images
	Effect of the Pose Vector on Synthesized Images

	Disentanglement w.r.t. the 3D Pose Regressor
	Appearance-only Attack Framework
	Appearance-only Attack Results

	Discussion
	Conclusion

	Conclusion
	Summary
	Lessons Learnt and Retrospective Comments
	Limitations and Future Work

	Bibliography
	Curriculum Vitae

