Interpretable Bag-of-Visual Words Networks for Adversarial Example Detection

Krishna Kanth Nakka and Mathieu Salzmann CVLab, EPFL

Presented by Krzysztof Lis, CVLab, EPFL

Research Goal

Understanding how deep neural network makes predictions, as well as when and why they make errors

Detection of malicious samples in the case of adversarial attacks

Structured Representations

A Text Retrieval Approach to Object Matching in Video

[Sivic et al., 2003]

Aggregating local descriptors into compact codes [Herve et al., 2010]

Deep Structured Networks

Multiscale Orderless Pooling [Gong et al., 2014]

Structured Representations

A Text Retrieval Approach to Object Matching in Video

[Sivic et al., 2003]

Aggregating local descriptors into compact codes [Herve et al., 2010]

Deep Structured Networks

Multiscale Orderless Pooling [Gong et al., 2014]

Structured Representations

Structured Representations

Herve et al., Aggregating local descriptors into compact codes, 2010

Classical Bag of Words Model

• Consider image
$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}, \dots, \mathbf{x}_n], \mathbf{x}_i \in \mathbf{R}^D$$

• Learn codebook: **B**, k-means clustering of descriptors

$$\mathbf{B} = [\mathbf{b}_1, \, \mathbf{b}_2,, \mathbf{b}_K], \, \mathbf{b}_i \in \mathbf{R}^D$$

• Histogram vector: $g(\mathbf{x}_i)$

$$g(\mathbf{x}) = [\delta(\mathbf{b}_1 = NN(\mathbf{x})), \dots, \delta(\mathbf{b}_N = NN(\mathbf{x}))]$$

$$\delta(true) = 1$$
 and $\delta(false) = 0$.

• Feature aggregation: $G(\mathbf{X}) \in \mathbf{R}^{D}$

$$G(\mathbf{X}) = \sum_{n=1}^{N} g(\mathbf{x}_n).$$

Net Bag of Words layer in CNNs

Soft assignment policy of features to the codewords

$$\mathbf{h}(\mathbf{x}) = [a_0(\mathbf{x}), a_1(\mathbf{x}), \cdots, a_K(\mathbf{x})]^T$$
$$a_k(\mathbf{x}) = \frac{e^{-\alpha \|\mathbf{x} - \mathbf{b}_k\|^2}}{\sum_{k'} e^{-\alpha \|\mathbf{x} - \mathbf{b}_{k'}\|^2}}.$$

x is a D-dimensional feature vector extracted at final convolutional layer **B** is learnable **Codebook** with K codewords each of D-dimension h(x) - BoW representation

Interpretable Codebook

Interpret the decisions of a CNN by assigning a visual representation to the codewords

We propose to learn semantic codewords in an end-to end manner using pre-trained generative adversarial networks

Interpretable Codebook

NetBoW model with BoW layer on the top of the network

Interpretable Codebook

Jointly optimize the latent space of GAN and BoW network

Visualization of Semantic Dictionaries

11/1 1/1/1/1/1/1/1/1/1/ 2222222222222222222222222 22222222222222222222222

Learned codewords per class on MNIST dataset

Codewords captures different shapes and orientation in the dataset

Interpreting CNN decisions on Clean Samples

50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	Every block of two rows
$\frac{1}{2a}$	2	- 7	2	7	7	2	י ר	2	2	2	` `	، د	2	1	2	י ג	1	2	1	7	2	2	<u>v</u>	First row: Input images from MNIST
2 2	5	~	3	ू ज	3	3	N	L N	3	(A	へ マ	N	2	3	2	S N	3	3	2	5	2 3	3	11 S	dataset
44	U.	4	2	4	ŭ	3	4	ר ע	4	4	H			4	1	0	: 4	4	4	ר ר	ų	v	A	
55	5	5	5	5	5	5	5	S	5	Ś	5	5	5	5	5	5	5	Ś	5	·	.5	5	5	
		/		,	,	2				_			_	_	_									

Interpreting CNN decisions on Clean Samples

orientation to input samples

Visualization of Semantic Dictionaries

Learned codewords per class on FMNIST dataset

Codewords captures different shapes and orientation in the dataset

Interpreting CNN decisions on Clean Samples

Interpreting CNN decisions on Clean Samples

Every block First row: Input images from MNIST dataset

Second row: activated codewords on MNIST dataset

Visualization of Semantic Dictionaries

Learned codewords per class on SVHN dataset

Codewords captures variance present in the dataset

Interpreting CNN decisions on Clean Samples

Interpreting CNN decisions on Clean Samples

Every block First row: Input images from SVHN dataset

Second row: activated codewords on SVHN dataset

Visualization of Semantic Dictionaries

Learned codewords on CIFAR-10 dataset, ordered by class labels

Interpreting CNN decisions on Clean Samples

Activated codewords are similar to class label of the input image

Every block of two rows

First row: Input images from CIFAR-10 dataset

Interpreting CNN decisions on Clean Samples

Every block First row: Input images from CIFAR-10 dataset

Second row: activated codewords on CIFAR-10 dataset

Adversarial Attack Detection

Adversarial Attack Detector

Computes similarity between activated visual codeword and input image using a Siamese network

000000000000000000000000000000000000000	Every block of two rows
1841186224731166617413644	First row:
48288742282282728272822	Adversarial images
833333333333333333333333333333333333333	Irom WINIST dataset
440444444444444444444444444444444444444	
858853359535555555555555555555555555555	
666666666666666666666666666666666666666	

Activated codewords are dissimilar to input image in class labels

Every block of two rows

First row: Adversarial images from FMNIST dataset

Every block First row: Input images from FMNIST dataset

Second row: activated codewords on FMNIST dataset

Activated codewords are dissimilar to input image in class labels

Every block of two rows

First row: Adversarial images from CIFAR dataset

Every block First row: Input images from CIFAR dataset

Second row: activated codewords on CIFAR dataset

Activated codewords are dissimilar to input image in class labels

Adv	ersarial Att	ack Detec	tion on Bo	oW Networ	KS AUROC
Dataset	Feature	FGSM	BIM-a	BIM-b	CW
MNIST	MD[1] Ours-GAN	100.0	100.0	100.0	67.18
F-MNIST	MD[1] Ours-GAN	98.5	85.49	89.4	72.7
SVHN	MD[1] Ours-GAN	99.7	83.0	93.4	89.6
CIFAR- 10	MD[1] Ours-GAN	97.9	84.7	84.5	91.6

Adv	ersarial Att	ack Detec	tion on Bo	oW Networ	KS AUROC
Dataset	Feature	FGSM	BIM-a	BIM-b	CW
MNIST	MD[1]	100.0	100.0	100.0	67.18
	Ours-GAN	100.0	100.0	100.0	<mark>100.0</mark>
F-MNIST	MD[1]	98.5	85.49	89.4	72.7
	Ours-GAN	100.0	<mark>100.0</mark>	100.0	97.9
SVHN	MD[1]	99.7	83.0	93.4	89.6
	Ours-GAN	100.0	<mark>96.2</mark>	100.0	<mark>96.5</mark>
CIFAR-	MD[1]	97.9	84.7	84.5	91.6
10	Ours-GAN	<mark>99.9</mark>	97.5	99.9	96.3

Adve	ersarial Atta	ack Detec	tion on Ba	ise Networ	KS AUROC
Dataset	Feature	FGSM	BIM-a	BIM-b	CW
MNIST	MD[1] Ours-GAN	100.0	100.0	100.0	99.96
F-MNIST	MD[1] Ours-GAN	98.2	94.0	99.1	95.8
SVHN	MD[1] Ours-GAN	99.8	81.3	99.4	92.6
CIFAR- 10	MD[1] Ours-GAN	97.5	76.7	99.9	96.4

Adve	ersarial Atta	ack Detec	tion on Ba	se Networ	KS AUROC
Dataset	Feature	FGSM	BIM-a	BIM-b	CW
MNIST	MD[1]	100.0	100.0	100.0	99.96
	Ours-GAN	100.0	100.0	100.0	100.0
F-MNIST	MD[1]	98.2	94.0	99.1	95.8
	Ours-GAN	<mark>100.0</mark>	<mark>100.0</mark>	100.0	97.9
SVHN	MD[1]	99.8	81.3	99.4	92.6
	Ours-GAN	100.0	96.3	100.0	96.9
CIFAR-	MD[1]	97.5	76.7	99.9	96.4
10	Ours-GAN	99.7	96.9	99.8	97.2

						AUKU
Dataset	Feature	Train	FGSM	BIM-a	BIM-b	CW
	LID	FGSM	91.2	65.5	64.3	29.0
MNIST	MD	FGSM	100.0	99.9	99.9	34.7
	Ours-GAN	BIM-a	100.0	100.0	100.0	97.5
	LID	FGSM	93.9	82.2	82.5	65.0
F-MNIST	MD [1]	FGSM	98.5	87.8	90.5	64.0
	Ours-GAN	CW	97.3	91.1	95.8	97.9
	LID	FGSM	99.2	77.5	79.8	75.1
SVHN	MD [1]	FGSM	99.7	69.5	78.7	79.1
	Ours-GAN	BIM-a	91.4	96.2	91.3	94.7
	LID	FGSM	89.2	66.5	68.3	66.0
CIFAR-10	MD [1]	FGSM	97.9	65.3	80.3	60.0
	Ours-GAN	BIM-a	86.9	97.5	95.0	95.4

Conomization to Different Attack

White Box Detector Attacks

xpose the detector network to attacker accuracy								
Dataset	Attack	Success Rate	Success Rate					
	Detector	without AT	with AT					
MNIST	FGSM	0.0	0.0					
	CW	100.0	8.0					
F-MNIST	FGSM	2.8	0.0					
	CW	100.0	27.2					

Adversarial training (AT) of the detector makes robust to white box detector attackls

Detecting Out-of-distribution Samples

In-Dataset	Out-Dataset	Baseline	MD [1]	Ours-GAN
	CIFAR-10	87.4	95.3	
SVHN	LSUN	89.1	99.3	
	Tiny ImageNet	90.0	98.8	
	Not-MNIST	77.1	85.8	
MNIST	OMNIGLOT	82.1	99.3	
	CIFAR	79.8	99.7	

AUROC

Detecting Out-of-distribution Samples

In-Dataset	Out-Dataset	Baseline	MD [1]	Ours-GAN
	CIFAR-10	87.4	95.3	97.3
SVHN	LSUN	89.1	99.3	99.9
	Tiny ImageNet	90.0	98.8	99.9
	Not-MNIST	77.1	85.8	99.9
MNIST	OMNIGLOT	82.1	99.3	100.0
	CIFAR	79.8	99.7	100.0

AUROC

Conclusion

By providing visual representation to BoW codeword filters in deep CNNs,

- We interpret the decisions of a CNN
- Leverage the activated codewords to detect adversarial and Out of distribution examples

Thank You

Multi-stage Training

ConvNet Features + SVMs

MultiScale Orderless Pooling [Gong et al., 2014]

End-to-end Training

Deep Structured Representation NetVLAD [Arandjelović et al., 2016] FisherNet [Peng et al., 2017]

End-to-end

Action VLAD: Spatio-temporal aggregation

Action recognition

Features are pooled across space and time using the ActionVLAD pooling layer

Rohit et al., ActionVLAD: Learning spatio-temporal aggregation for action classification, 2017