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Abstract—In recent years, Siamese networks have led to great progress in visual object tracking. While these methods were shown to
be vulnerable to adversarial attacks, the existing attack strategies do not truly pose great practical threats. They either are too
expensive to be performed online, require computing image-dependent perturbations, lead to unrealistic trajectories, or suffer from
weak transferability to other black-box trackers. In this paper, we address the above limitations by showing the existence of a universal
perturbation that is image agnostic and fools black-box trackers at virtually no cost of perturbation. Furthermore, we show that our
framework can be extended to the challenging targeted attack setting that forces the tracker to follow any given trajectory by using
diverse directional universal perturbations. At the core of our framework, we propose to learn to generate a single perturbation from the
object template only, that can be added to every search image and still successfully fool the tracker for the entire video. As a
consequence, the resulting generator outputs perturbations that are quasi-independent of the template, thereby making them universal
perturbations. Our extensive experiments on four benchmarks datasets, i.e., OTB100, VOT2019, UAV123, and LaSOT, demonstrate
that our universal transferable perturbations (computed on SiamRPN++) are highly effective when transferred to other state-of-the-art
trackers, such as SiamBAN, SiamCAR, DiMP, and Ocean online.

Index Terms—Adversarial Attacks, Visual Object Tracking, Universal Attacks
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1 INTRODUCTION

Visual Object Tracking (VOT) [1] is a key component of many
vision-based systems, such as surveillance and autonomous driv-
ing ones. Studying the robustness of object trackers is therefore
critical from a safety point of view. When using deep learning,
as most modern tackers do, one particular security criterion is the
robustness of the deep network to adversarial attacks, that is, small
perturbations aiming to fool the prediction of the model. In recent
years, the study of such adversarial attacks has become an in-
creasingly popular topic, extending from image classification [2],
[3] to more challenging tasks, such as object detection [4] and
segmentation [5], [6].

VOT is no exception to this rule, and several works [7], [8],
[9], [10], [11] have designed attacks to fool the popular Siamese-
based trackers [12], [13], [14], [15]. Among these, while the
attacks in [7], [8], [9] are either too time-consuming or designed
to work on entire videos, thus not applicable to fool a tracker
in real-time and in an online fashion, the strategies of [10], [11]
leverage generative methods [16], [17] to synthesize perturbations
in real-time, and can thus effectively attack in an efficient manner.
Despite promising results, we observed these generative strategies
to suffer from three main drawbacks: (i) They require computing
a search-image-dependent perturbation for each frame, which
reduces the running speed of the real-time trackers by up to
40 fps, making them ineffective for practical applications such
as surveillance and autonomous driving; (ii) They assume the
availability of white-box trackers and yield attacks that generalize
poorly when transferred to unseen, black-box trackers; (iii) They
largely focus on untargeted attacks, whose goal is to make the
tracker output any, unspecified, incorrect object location, which

krishna.nakka@epfl.ch

can easily be detected because the resulting tracks will typically
not be consistent with the environment.

In this paper, we argue that learning to generate online
attacks with high transferability is essential for posing practical
threats to trackers and accessing their robustness. Therefore,
we propose to learn a transferable universal perturbation, i.e., a
single pre-computed perturbation that can be employed to attack
any given video sequence on-the-fly and generalizes to unseen
black-box trackers. To achieve this, we introduce a simple yet
effective framework that learns to generate a single, one-shot
perturbation that is transferable across all the frames of the input
video sequence. Unlike existing works [10], [11] that compute
search-image-dependent perturbations for every search image in
the video, we instead synthesize a single perturbation from the
template only and add this perturbation to every subsequent search
image. As a consequence of adding the same perturbation to each
search image, thus remaining invariant to the search environment,
the resulting framework inherently learns to generate powerful
transferable perturbations capable of fooling not only every search
image in the given video but also other videos and other black-
box trackers. In other words, our frameworks learns to generate
universal perturbations that are quasi-independent of the input
template and of the tracker used to train the generator.

Moreover, in contrast to previous techniques, our approach
naturally extends to performing targeted attacks so as to steer
the tracker to follow any specified trajectory in a controlled
fashion. To this end, we condition our generator on the targeted
direction and train the resulting conditional generator to produce
perturbations that correspond to arbitrary, diverse input directions.
Therefore, at test time, we can then pre-compute directional
universal perturbations for a small number of diverse directions,
e.g., 12 in our experiments, and apply them in turn so as to
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Fig. 1: Universal directional pertubations. Our approach learns an effective universal directional perturbation to attack a black-box tracker
throughout the entire sequence by forcing it to follow a predefined motion, such as a fixed direction as illustrated above, or a more complicated
trajectory, as shown in our experiments. The green box denotes the ground truth, the yellow box the output bounding box under attack, the red
arrow the desired target direction. We refer the reader to the demo video in the supplementary material.

generate the desired complex trajectory. We illustrate this in Fig. 1,
where a single precomputed universal directional perturbation can
steer the black-box tracker to move along a given direction for
the entire video sequence and will show more complex arbitrary
trajectories in our experiments. We will make our code publicly
available upon acceptance.

Overall, our contributions can be summarized as follows:

• We introduce a transferable attack strategy to fool unseen
Siamese-based trackers by generating a single universal
perturbation. This is the first work that shows the existence
of universal perturbations in VOT.

• Our attacking approach does not compromise the operat-
ing speed of the tracker and adds no additional computa-
tional burden.

• Our framework naturally extends to performing control-
lable targeted attacks, allowing us to steer the tracker to
follow complex, erroneous trajectories. In practice, this
would let one generate plausible incorrect tracks, making
it harder to detect the attack.

We demonstrate the benefits of our approach on 4 public
benchmark datasets, i.e., OTB100, VOT2018, UAV123 and La-
SOT, and its transferability using several state-of-the-art trackers,
such as SiamBAN, SiamCAR, DiMP, and Ocean online.

2 RELATED WORK

Visual Object Tracking. VOT aims to estimate the position
of a template cropped from the first frame of a video in each
of the subsequent frames. Unlike most other visual recognition
tasks, e.g., image classification or object detection, that rely on
predefined categories, VOT seeks to generalize to any target
object at inference time. As such, early works mainly focused
on measuring the correlation between the template and the search
image [18], extended to exploiting multi-channel information [19]
and spatial constraints [20], [21].

Nowadays, VOT is commonly addressed by end-to-end
learning strategies. In particular, Siamese network-based
trackers [12], [13], [14], [15], [22] have grown in popularity
because of their good speed-accuracy tradeoff and generalization
ability. The progress in this field includes the design of a

cross-correlation layer to compare template and search image
features [13], the use of a region proposal network (RPN) [23] to
reduce the number of correlation operations [13], the introduction
of an effective sampling strategy to account for the training data
imbalance [22], the use of multi-level feature aggregation and
of a spatially-aware sample strategy to better exploit deeper
ResNet backbones [12], and the incorporation of a segmentation
training objective to improve the tracking accuracy [15]. In
our experiments, we will focus on SiamRPN++ [12] as a
white box model and study the transferability of our generated
adversarial attacks to other modern representative trackers,
namely SiamBAN [24], SiamCAR [25], DiMP [26] and Ocean-
online [27].

Adversarial Attacks. Inspired by the progress of advesarial at-
tacks in image classification [2], [3], [28], [29], [30], [31], iterative
adversarial attacks have been first studied in the context of VOT.
In particular, SPARK [7] computes incremental perturbations by
using information from the past frames; [8] exploits the full
video sequence to attack the template by solving an optimization
problem relying on a dual attention loss. Recently, [32] proposed a
decision-based black-box attack based on IoU overlap between the
original and perturbed frames. While effective, most of the above-
mentioned attacks are time-consuming, because of their use of
heavy gradient computations or iterative schemes. As such, they
are ill-suited to attack an online visual tracking system in real time.
[33] also relies on a gradient-based scheme to generate a physical
poster that will fool a tracker. While the attack is real-time, it
requires to physically alter the environment.

As an efficient alternative to iterative attacks, AdvGAN [17]
proposed to train a generator that synthesizes perturbations in a
single forward pass. Such generative perturbations were extended
to VOT in [10], [11]. For these perturbations to be effective,
however, both [10] and [11] proposed to attack every individual
search image, by passing it through the generator. To be precise,
while [10] studied the problem of attacking the template only the
success of the resulting attacks was shown to be significantly lower
than that of perturbing each search image. Doing so, however,
degrades the tracker running speed by up to 40 fps and generalizes
poorly to unseen object environments. Here, instead, we show the
existence of universal transferable perturbations, which are trained
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using a temporally-transferable attack strategy, yet effectively fool
black-box VOT in every search image; the core success of our
approach lies in the fact that the perturbation is generated from
the template, agnostic to the search images but shared across all
frames. This forces the generator to learn powerful transferable
perturbation patterns by using minimal but key template informa-
tion. Furthermore, our approach can be extended to producing tar-
geted attacks by conditioning the generator on desired directions.
In contrast to [11], which only briefly studied targeted attacks
in the restricted scenario of one specific pre-defined trajectory,
our approach allows us to create arbitrary, complex trajectories at
test time, by parametrizing them in terms of successive universal
targeted perturbations.

3 METHODOLOGY

Problem Definition. Let X = {Xi}T1 denote the frames of a video
sequence of length T , and z be the template cropped from the
first frame of the video, and F(·) be the black-box tracker that
aims to locate the template z in search regions extracted from
the subsequent video frames. In this work, we aim to find a
universal perturbation δ that, when added to any search region Si
to obtain an adversarial image S̃i = Si + δ, leads to an incorrect
target localization in frame i . Note that, unlike universal attacks
on image classification [34] that aim to fool a fixed number of
predefined object categories, in VOT the objects at training and
testing times are non-overlapping.

3.1 Overall Pipeline
Figure 2 illustrates the overall architecture of our training frame-
work, which consists of two main modules: a generator G and
a siamese-based white-box tracker Fw. To produce highly trans-
ferable perturbations, we propose a simple yet effective learning
framework. We first train our perturbation generator to synthesize
a single perturbation δ from the template, and add this perturbation
to every subsequent search image. As a result of adding the same
perturbation, our model learns a temporally-transferable δ that can
successfully attack every search image. This makes the learned δ
independent of the search image, which further helps generaliza-
tion to unseen object environments. In other words, by removing
the dependence on the search region and relying only on the object
template, our generator learns a universal adversarial function
that disrupts object-specific features and outputs a perturbation
pattern that is quasi-agnostic to the template. Thus, during the
attack stage, we precompute a universal perturbation δu from any
arbitrary input template and perturb the search region of any video
sequence, resulting in an incorrect predicted location. Overall, our
attack strategy is highly efficient and flexible, and enjoys superior
transferability. Below, we introduce our loss functions in detail
and then extend our framework to learning universal targeted
perturbations.

3.2 Training the Generator
To train the generator, we extract a template z from the first
frame of a given video sequence and feed it to the generator to
obtain a perturbation δ = G(z). We then crop N search regions
from the subsequent video frames using ground-truth information,
and add δ to each such regions to obtain adversarial search
regions S̃ = {S̃i}N1 . Finally, we feed the clean template z and
each adversarial search region S̃i to the tracker to produces an

adversarial classification map H̃i ∈ RH×W×K and regression
map R̃i ∈ RH×W×4K .

Standard Loss. Our goal is to obtain the adversarial classification
H̃i and regression maps R̃i so as to fool the tracker, i.e., result
in erroneously locating the target. To this end, we compute the
classification map Hi ∈ RH×W×K for the unperturbed search
image Si , and seek to decrease the score in H̃i of any proposal
j such that Hi(j) > τ , where Hi(j) indicates the probability
for anchor j to correspond to the target and τ is a threshold.
Following [10], we achieve this by training the perturbation
generator G with the adversarial loss term

Lfool(F , z, S̃i) = λ1
∑

j|Hi(j)>τ

max
(
H̃i(j)− (1− H̃i(j)), µc

)
+λ2

∑
j|Hi(j)>τ

(
max

(
R̃w
i (j), µw

)
+max

(
R̃h
i (j), µh

))
,

(1)
where R̃w

i (j) and R̃h
i (j) represent the width and height

regression values for anchor j. The first term in this objective
aims to simultaneously decrease the target probability and
increase the background probability for anchor j where the
unattacked classification map contained a high target score. The
margin µc then improves the numerical stability of this dual goal.
The second term encourages the target bounding box to shrink,
down to the limits µw and µh, to facilitate deviating the tracker.

Shift Loss. The loss Lfool discussed above only aims to decrease
the probability of the anchors obtained from the unattacked search
region. Here, we propose to complement this loss with an addi-
tional objective seeking to explicitly activate a different anchor
box t, which we will show in our experiments to improve the
attack effectiveness. Specifically, we aim for this additional loss
to activate an anchor away from the search region center, so as
to push the target outside the true search region, which ultimately
will make the tracker be entirely lost. To achieve this, we seek to
activate an anchor t lying at a distance d from the search region
center. We then write the loss

Lshift(F , z, S̃i) = λ3Lcls(H̃i(t)) + λ4Lreg(R̃i(t), r
∗) , (2)

where Lcls is a classification loss encoding the negative log-
likelihood of predicting the target at location t, and Lreg
computes the L1 loss between the regression values at location
t and pre-defined regression values r∗ ∈ R4, a vector of 4
parametrizing regression values associated with a ground truth
propasal at location t.

Extension to Targeted Attacks. The untargeted shift loss dis-
cussed above aims to deviate the tracker from its original tra-
jectory. However, it does not allow the attacker to force the
tracker to follow a pre-defined trajectory. To achieve this, we
modify our perturbation generator to be conditioned on the desired
direction we would like the tracker to predict. In practice, we
input this information to the generator as an additional channel,
concatenated to the template. Specifically, we compute a binary
mask Mi ∈ {0, 1}(W×H), and set Mi(j) = 1 at all spatial
locations under the bounding box which we aim the tracker to
output. Let Bt

i be such a targeted bounding box, and rti the
corresponding desired offset from the nearest anchor box. We can
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Fig. 2: Our temporally-transferable attack framework. Given the template, we generate a single temporally-transferable perturbation and
add it to the search region of any subsequent frame to deviate the tracker.

then express a shift loss similar to the one in Eq. 2 but for the
targeted scenario as

Lshift(F , z, S̃i,Mi) = λ3Lcls(H̃i(t)) + λ4Lreg(R̃i(t), r
t
i) ,
(3)

where, with a slight abuse of notation, t now encodes the targeted
anchor.

3.2.1 Overall Loss Function.
In addition to the loss functions discussed above, we use a
perceptibility loss Lp aiming to make the generated perturbations
invisible to the naked eye. We express this loss as

Lp = λ5‖Si − Clip{Si,ε}{Si + δ}‖22 , (4)

where the Clip function enforces an L∞ bound ε on the perturba-
tion. We then write the complete objective to train the generator
as

L(F , z,Si) = Lfool + Lshift + Lp , (5)

where Lshift corresponds to Eq. 2 in the untargeted case, and to
Eq. 3 in the targeted one.

3.3 Universal Perturbations: Inference time
Once the generator is trained using the loss in Eq. 5, we can
use it to generate a temporally-transferrable perturbation from the
template zt of any new test sequence, and use the resulting pertur-
bation in an online-tracking phase at inference time. This by itself
produces a common transferable perturbation for all frames of a
given video, thereby drastically reducing the computational cost of
perturbation compared to the image-dependendent perturbations
in [10], [11]. Importantly, we observed that the trained generator
learns to output a fixed perturbation pattern irrespective of the
input template. This is attributed to the fact that our framework
by design relies on exploiting key template information only,
while being agnostic to the object’s environment, thus forcing the
generator to learn a universal adversarial function that disrupts
the object-specific features in siamese-networks. Therefore, at
inference time, we precompute a universal perturbation δu for
an arbitrary input and apply it to any given test sequence to
deviate the tracker from the trajectory predicted from unatttacked
images. Furthermore, to force the tracker to follow complex target
trajectories, such as following the ground-truth trajectory with an
offset, we use precomputed universal directional perturbations for
a small number,K , of predefined, diverse directions, withK = 12
in our experiments, and define the target trajectory as a sequence
of these directions.

Relation to Prior Generative Attacks. Our proposed framework
bears similarities with CSA in that both train a perturbation
generator to fool a siamese tracker. However, our work differs
from CSA in three fundamental ways. 1) In CSA, the perturbation
is computed for every search image by passing it to the generator.
By contrast, in our method, the perturbation depends only on the
template and is shared across all search images. 2) In CSA, the
attacks are limited to the untargeted setting, whereas our method
extends to the targeted case and allows us to steer the tracker along
any arbitrary trajectory. 3) By learning a perturbation shared across
all search images, while being agnostic to them, our framework
makes the perturbation more transferable than those of CSA, to
the point of producing universal perturbations, as shown in our
experiments.

4 EXPERIMENTS

Datasets and Trackers. Following [10], we train our perturbation
generator on GOT-10K [35] and evaluate its effectiveness on 3
short-term tracking datasets, OTB100 [36], VOT2018 [37] and
UAV123 [38], and on one long-scale benchmark LaSOT [39].
We primarily use white-box SiamRPN++ (R) [12] tracker with
ResNet-50 [40] backbone, and train our U-Net [41] generator. We
study the transferability of attacks to 4 state-of-the-art trackers
with different frameworks, namely, SiamBAN, SiamCAR, DiMP,
and Ocean-online. We also transfer attacks to SiameseRPN++ (M)
with MobileNet backbone, differing from the ResNet backbone
of the white-box model. In contrast to SiamRPN++, which refines
anchor boxes to obtain the target bounding boxes, SiamBAN and
SiamCAR directly predict target bounding boxes in an anchor-free
manner, avoiding careful tuning of anchor box size and aspect
ratio; DiMP uses background information to learn discriminative
target filters in an online fashion; Ocean-online uses a similar
framework to DiMP to learn target filters in an object-aware
anchor-free manner. We report the performance of our adversarial
attacks using the metrics employed by each dataset to evaluate the
effectiveness of unattacked trackers. In particular, we report the
precision (P) and success score (S) for OTB100, UAV123, and
LaSOT. For VOT2018, we report the tracker restarts (Re) and the
Expected Average Overlap (EAO), a measure that considers both
the accuracy (A) and robustness (R) of a tracker.

Evaluation Metrics. We report the performance of our adversarial
attacks using the metrics employed by each dataset to evaluate the
effectiveness of unattacked trackers. Specifically, for OTB100 and
UAV123, we report the precision (P) and success score (S). The
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precision encodes the proportion of frames for which the center of
the tracking window is within 20 pixels of the ground-truth center.
The success corresponds to the proportion of frames for which the
overlap between the predicted and ground-truth tracking window
is greater than a given threshold. For VOT2018, we report the
Expected Average Overlap (EAO), a measure that considers both
the accuracy (A) and robustness (R) of a tracker. Specifically,
the accuracy denotes the average overlap, and the robustness is
computed from the number of tracking failures. Furthermore,
we also report the number of restarts because the standard VOT
evaluation protocol reinitializes the tracker once it is too far away
from the ground truth. To evaluate targeted attacks, we further
report the proportion of frames in which the predicted and the
target trajectory center are at a distance of at most 20 pixels.

Implementation Details. We implement our approach in
PyTorch [42] and perform our experiments on an NVIDIA Telsa
V100 GPU with 32GB RAM. We train the generator using
pre-cropped search images uniformly sampled every 10 frames
from the video sequences of GOT-10K. We use the Adam [43]
optimizer with a learning rate of 2 × 10−4. We set the margin
thresholds mc, mw, mh to -5 as in [10], and the l∞ bound ε to
{8, 16}. To fool the tracker, we use λ1 = 0.1, λ2 = 1, λ5 = 500
as in csa, and activate an anchor at distance d = 4 directly below
the true center and of size 64× 64 for all untargeted experiments.
Furthermore, we set the shift loss weights λ3 and λ4 to 0.1 and
1, respectively. For targeted attacks, we define rti in Eq. 3 as a
randomly-selected anchor at distance d = 4 from the true center
and set its size to 64 × 64 for all datasets. We resize the search
images to 255 × 255 and the template to 127 × 127 before
passing them to the tracker.

Baselines. We compare our approach with the state-of-the-art,
generator-based CSA [10] attack strategy, the only other online
method performing untargeted attacks on RPN-based trackers.1

Specifically, CSA can be employed in 3 settings: CSA (T), which
on attacks the template, CSA (S), which attacks all search images,
and CSA (TS), which attacks both the template and all search
regions. As will be shown below, CSA (T), the only version
that, as us, generates a perturbation from only the template, is
significantly less effective than CSA (S) and CSA (TS). These two
versions, however, compute a perturbation for each search region,
whereas our approach generates a single transferable perturbation
from the template, and uses it at virtually no additional cost for
the rest of the sequence, or even to attack other video sequences.

Computing a Universal Perturbation. During inference, we can
use the object template cropped form any arbitrary sequence as
input to the generator. For our experiments, without any loss
of generality, we use the template cropped from the first video
sequence of OTB100 to obtain a universal adversarial perturbation.
Furthermore, for targeted attacks, we precompute K = 12 diverse
universal directional perturbations with same template as input,
and use them to force the tracker to follow any target trajectory
for any input video sequence.

1. The attack strategy of [11] was tailored for fully convolutional and non-
regression based trackers, such as SiamFC [13]. While the code for [11]
is not public and authors did not respond to our communication, our own
reimplementation showed that distance loss in [11] was only effective for
pixel-level correlation networks, such as SiamFC, and not for regression-based
trackers.

Fig. 3: Change in tracker speed. We compare the speed (FPS) of
state-of-the-art trackers before and after attack.

5 RESULTS

1. How efficient is the proposed approach at attacking
modern trackers? One of the primary motivation for proposing
universal transferable perturbations is to not compromise the
running speed of the tracker. We therefore compare the operating
speed of the tracker before and after the attack in Figure 3.
Across the board, CSA (S) and CSA (TS) decrease the tracker
speed significantly on average by 35 fps. For instance, SiamCAR
under CSA (TS) makes the tracker operate below real-time
(30 FPS) at 15.6 fps from original 71.6 fps, thus limiting its
practical applicability for surveillance. While CSA (T) operates
at a speed similar to our proposed approach, with a minimal
speed degradation of about 1-5 fps, we significantly outperform it
in terms of attack effectiveness as shown in the following sections.

2. How effective is the proposed approach at attacking
modern trackers? Below, we evaluate the effectiveness of our
proposed attack strategy. We denote the perturbation obtained
with our complete loss as Ours, and refer to a variant of our
method without the Lshift term as Oursf . Furthermore, we
denote the variant of our method that uses the template from the
input video to compute a temporally transferable perturbation as
“TD”, which has the same perturbation cost as CSA (T).

Results on Untargeted Attacks. From Tables 1, 2, 3, and 4,
we can conclude that: (1) Our proposed approach consistently
drops the performance of 5 black-box trackers in all settings. This
highlights the generality of our approach in attacking black-box
trackers with different frameworks. (2) Ours (TD), which uses the
template from the video to compute a transferable perturbation
for all search images, performs at a similar level to that of Ours,
which uses a single universal transferable perturbation (see rows
6 vs 8). This validates that our trained generator is quasi-agnostic
to the input template and enjoys the power of universality. (3)
DiMP and Ocean, with online updates of discriminative filters
to capture the appearance changes, are more robust to attacks on
short-term datasets than other trackers. Interestingly, however, for
a large-scale dataset such as LaSOT, the precision of Ocean-online
and DiMP drops to 0.143 and 0.412 from the original 0.587 and
0.513, respectively. This implies that, once the tracker drifts to an
incorrect position, the online updates corrupt the filters, which is
especially noticeable in long video sequences. (4) In Table 4 on
VOT2018, although CSA computes the perturbation from the new
template when the tracker restarts after a failure, our universal
perturbations significantly outperform CSA (TS), on average by
∼340 restarts. Moreover, our approach significantly decreases
the EAO, which is the primary metric to rank trackers (row 4 vs 8).

Results on Targeted Attacks. Since manually creating intelligent
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Methods SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)

Normal 0.657 0.862 0.692 0.910 0.696 0.908 0.650 0.847 0.669 0.884

CSA (T) 0.613 0.833 0.590 0.793 0.657 0.852 0.649 0.849 0.614 0.843
CSA (S) 0.281 0.440 0.371 0.531 0.373 0.536 0.641 0.840 0.390 0.645
CSA (TS) 0.348 0.431 0.347 0.510 0.391 0.559 0.642 0.844 0.423 0.705

Oursf (TD) 0.347 0.528 0.478 0.720 0.444 0.599 0.643 0.839 0.492 0.768
Ours (TD) 0.217 0.281 0.198 0.254 0.292 0.377 0.631 0.821 0.345 0.452

Oursf 0.408 0.616 0.478 0.721 0.567 0.770 0.646 0.843 0.592 0.829
Ours 0.212 0.272 0.198 0.253 0.292 0.374 0.638 0.837 0.338 0.440

TABLE 1: Untargeted attack results on OTB100 with ε = 8.

Methods SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)

Normal 0.450 0.537 0.513 0.594 0.452 0.536 0.569 0.642 0.487 0.587

CSA (T) 0.465 0.553 0.462 0.444 0.352 0.419 0.501 0.593 0.446 0.516
CSA (S) 0.119 0.157 0.186 0.239 0.094 0.116 0.449 0.529 0.181 0.210
CSA (TS) 0.125 0.169 0.151 0.186 0.096 0.120 0.435 0.516 0.161 0.180

Oursf (TD) 0.166 0.214 0.198 0.239 0.129 0.152 0.418 0.499 0.248 0.308
Ours (TD) 0.114 0.146 0.095 0.108 0.079 0.092 0.419 0.487 0.112 0.128

Oursf 0.152 0.203 0.199 0.241 0.120 0.145 0.390 0.461 0.246 0.298
Ours 0.111 0.146 0.095 0.109 0.075 0.089 0.412 0.475 0.126 0.143

TABLE 2: Untargeted attack results on LaSOT with ε = 8.

target trajectories is difficult and beyond the scope of this work,
we consider two simple but practical scenarios to quantitatively
analyze the effectiveness of our attacks.

1) The attacker forces the tracker to follow a fixed direction.
We illustrate this with 4 different directions (+45◦,
−45◦, +135◦, −135◦), and aiming to shift the box by
(±3, ±3) pixels in each consecutive frame.

2) The attacker seeks for the tracker to follow a more
complicated trajectory. To illustrate this, we force the
tracker to follow the ground-truth trajectory with a fixed
offset (±80, ±80).

Note that our attacks are capable of steering tracker along any
general trajectory, not limited to the two cases above.

In both cases, we pre-compute universal directions perturba-
tions corresponding K = 12 diverse directions with template
cropped from first video of OTB100, and use them to force the
tracker to follow the target trajectory. To this end, we sample
K = 12 points at a distance d = 5 from the object center in
feature map of size 25×25 and, for each, synthesize a conditional
mask Mi ∈ {0, 1}(W×H) whose active region is centered at the
sampled point. We then feed each such mask with the template
to obtain directional perturbations, which we will then transfer to
the search images. During the attack for each frame, we compute
the direction the tracker should move in and use the precomputed
perturbation that is closest to this direction.

We report the precision score at a 20 pixel threshold for
our two attack scenarios, averaged over 4 cases, in Table 5 for
ε = 16. For direction-based targets, our universal directional
perturbations allow us to follow the target trajectory with
promising performance. Our approach yields a precision of
0.627, 0.507, 0.536, and 0.335 on average on SiamRPN++(M),
SiamBAN, SiamCAR and Ocean-online, respectively. For offset-
based targets, which are more challenging than direction-based
ones, our approach yields precision scores of 0.487, 0.350,
0.331 and 0.301 on average on the same 4 black-box trackers,
respectively. Note that targeted attacks is quite challenging
due to distractors and similar objects present in the search
region. Nevertheless, our universal directional perturbations set
a benchmark for image-agnostic targeted attacks on unseen

Methods SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑) S (↑) P (↑)

Normal 0.602 0.801 0.603 0.788 0.619 0.777 0.633 0.834 0.584 0.788

CSA (T) 0.541 0.746 0.478 0.670 0.580 0.760 0.614 0.816 0.524 0.723
CSA (S) 0.288 0.466 0.299 0.485 0.270 0.440 0.593 0.798 0.264 0.489
CSA (TS) 0.270 0.452 0.278 0.487 0.271 0.428 0.598 0.811 0.278 0.510

Oursf (TD) 0.369 0.561 0.372 0.569 0.337 0.503 0.562 0.757 0.404 0.648
Ours (TD) 0.270 0.368 0.248 0.349 0.239 0.349 0.573 0.770 0.272 0.399

Oursf 0.356 0.549 0.372 0.569 0.316 0.469 0.578 0.775 0.392 0.634
Ours 0.273 0.371 0.250 0.352 0.255 0.371 0.579 0.777 0.274 0.401

TABLE 3: Untargeted attack results on UAV123 with ε = 8.

Fig. 4: Visualizations for targeted attacks. (a) The tracker is forced
to move in a constant direction, indicated by the red arrow. (b) The
tracker is forced to follow the ground truth with a fixed offset of (80,
80) pixels.

black-box trackers. Figure 4 shows the results of targeted attacks
on various datasets with SiamRPN++(M). The results at the
bottom, where the tracker follows the ground-truth trajectory with
an offset, illustrate the real-world applicability of our attacks,
where one could force the tracker to follow a realistic, yet
erroneous path. Such realistic trajectories can deceive the system
without raising any suspicion.

3. What perturbation patterns does the proposed approach
learn? To give insights to this question, we display the learned
universal perturbations along with adversarial search regions in
Figure 5. In the top row, we can see that, for untargeted attacks
with the shift loss, our generator learns to place a universal
object-like patch at the shift position. By contrast, the perturbation
in CSA (S) is concentrated on the center region to decrease the
confidence of the proposal. In the second row, we observe that, for
targeted attacks, the perturbations are focused around the regions
of the desired target box. This evidences that our conditioning
scheme is able to capture the important information about the
desired bounding box. Furthermore, as shown in the bottom row,
our results remain imperceptible thanks to our similarity loss.

Comparison to Iterative Black-box attacks. We compare our
approach with the state-of-the-art black-box IoU-based attack [32]
in Tables 8 and 9. This IoU attack requires access to the tracker
predictions. As such, it spends a significant query budget for each
frame, thereby decreasing the tracker speed to less than 5 FPS.
By contrast, our method learns a highly transferable universal
perturbation on a substitute SiameseRPN++(R) tracker, and thus
significantly outperforms the IoU attack with virtually no drop in
tracker speed. Note that we could not run the IoU attack on large-
scale datasets such as UAV123 and LaSOT because of impractical
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Method SiamRPN++(M) SiamBAN SiamCAR DiMP Ocean online

A (↑) R (↓) EAO (↑) Re (↓) A (↑) R (↓) EAO (↑) Re (↓) A (↑) R (↓) EAO(↑) Re (↓) A (↑) R (↓) EAO(↑) Re (↓) A (↑) R (↓) EAO (↑) Re (↓)

Original 0.58 0.24 0.400 51 0.60 0.320 0.340 69 0.58 0.280 0.36 60 0.607 0.3000 0.323 64 0.56 0.220 0.374 47

CSA (T) 0.56 0.440 0.265 95 0.56 0.590 0.190 126 0.56 0.426 0.280 91 0.60 0.220 0.362 47 0.45 0.580 0.189 124
CSA (S) 0.42 2.205 0.067 471 0.43 1.807 0.076 386 0.48 1.597 0.101 341 0.59 0.239 0.367 51 0.20 1.462 0.083 202
CSA (TS) 0.40 2.196 0.067 469 0.38 1.789 0.075 382 0.45 1.475 0.107 315 0.58 0.286 0.322 61 0.22 1.221 0.082 261

Oursf (TD) 0.48 1.625 0.089 347 0.48 1.508 0.079 322 0.52 1.569 0.096 335 0.60 0.26 0.337 56 0.47 0.445 0.232 95
Ours (TD) 0.51 5.095 0.029 1088 0.44 5.071 0.024 1083 0.60 3.341 0.053 712 0.59 0.512 0.219 109 0.38 1.621 0.074 346

Oursf 0.45 2.098 0.070 448 0.46 1.915 0.070 409 0.51 1.842 0.091 393 0.59 0.267 0.350 57 0.42 0.515 0.209 110
Ours 0.52 4.856 0.029 1037 0.44 5.034 0.024 1075 0.59 3.184 0.056 680 0.56 0.445 0.235 95 0.39 1.482 0.081 316

TABLE 4: Untargeted attack results on VOT2018 with ε = 8.

Fig. 5: Qualitative Results. We show, in the first row, the perturbations learned for untargeted attacks; in the second row, the universal
directional perturbations for the targeted attack; in the last row, the adversarial search regions obtained with our targeted attack framework for
ε = 16.

Dataset SiamRPN++ (M) SiamBAN SiamCAR Ocean online

Direction Offset Direction Offset Direction Offset Direction Offset

OTB100 0.521 0.544 0.345 0.257 0.340 0.295 0.128 0.113
VOT2018 0.745 0.515 0.672 0.455 0.661 0.501 0.412 0.372
UAV123 0.476 0.401 0.325 0.295 0.397 0.297 0.260 0.267
LaSOT 0.768 0.489 0.689 0.395 0.747 0.232 0.543 0.521

Average 0.627 0.487 0.507 0.350 0.536 0.331 0.335 0.301

TABLE 5: Targeted attack results. We report average precision
scores for ε = 16 for direction and offset-based target trajectories.

runtimes.

6 ABLATION STUDIES

In this section, we analyze the impact of each loss term of
our framework. In Table 6, we report the precision scores on
OTB100 with different combination of loss terms, where Lclsfool
and Lregfool represent the classification and regression components
of the fooling loss of Eq. 1, and Lclsshift and Lregshift represent
the same terms for the shift loss of Eq. 2. To summarize, while
all loss terms are beneficial, the classification-based terms are

Lcls
fool

Lreg
fool Lcls

shift
Lreg
shift

SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

- - - - 0.862 0.910 0.908 0.847 0.884
3 - - - 0.566 0.604 0.654 0.851 0.801
- 3 - - 0.617 0.726 0.790 0.841 0.827
- - 3 - 0.790 0.800 0.851 0.858 0.805
- - - 3 0.858 0.890 0.884 0.858 0.879
3 3 - - 0.616 0.721 0.770 0.843 0.829
- - 3 3 0.695 0.735 0.734 0.828 0.750
3 - 3 - 0.328 0.316 0.531 0.827 0.592
- 3 - 3 0.682 0.769 0.826 0.848 0.852
3 3 3 3 0.272 0.252 0.374 0.837 0.440

TABLE 6: Component-wise analysis. Contribution of each loss
for untargeted attacks on OTB100 using our approach. We report
precision score and set ε = 8.

more effective than regression-based ones. For example, using
either Lclsfool or Lclsshift has more impact than Lregfool or Lregshift.
In Table 7, we study the impact of the shift distance d in Eq. 2 on
the performance of untargeted attacks. For a feature map of size
25×25 for SiamRPN++, the performance of our approach is stable
for a drift in the range 4 to 8. However, for d = 2, our attacks
have less effect on the tracker, and for d = 10, the influence of the
attack decreases because of the Gaussian prior used by the tracker.
Effect of the number K of Directional Perturbations. In the
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Shift d SiamRPN++ (M) SiamBAN SiamCAR DiMP Ocean online

0 0.616 0.721 0.770 0.843 0.829
2 0.332 0.254 0.551 0.814 0.493
4 0.272 0.252 0.374 0.837 0.440
6 0.330 0.409 0.481 0.844 0.618
8 0.323 0.489 0.480 0.834 0.684

10 0.427 0.510 0.612 0.851 0.763

TABLE 7: Ablation study. Effect of d in Lshift for untargeted
attacks on OTB100. We report precision score and set ε = 8.

Methods SiamBAN SiamCAR SiamRPN++(M)

FPS(↑) S (↑) P (↑) FPS(↑) S (↑) P (↑) FPS(↑) S (↑) P (↑)

Normal 72.3 0.692 0.910 71.2 0.696 0.908 94 0.657 0.862
IoU 5.6 0.513 0.682 4.3 0.595 0.778 4.5 0.505 0.670
Ours 71.7 0.198 0.253 70.2 0.292 0.374 90 0.212 0.272

TABLE 8: Comparison with black-box IoU attack on OTB100. We report
untargeted attack results with ε = 8.

targeted attack experiments, we typically precompute K = 12
diverse directional perturbations. For each one, we activate a target
bounding boxes at a radius 4 from the center of 25 × 25 feature
map of SiameseRPN++ [12]. In Table 10, we vary this parameter
K and report the precision score for offset-based targeted attacks
with ε = 16. We observe that with minimum value of K = 4
encoding 4 directions yields lower precision scores than K = 12
for both datasets. However, as K increases from 4 to 12, the
precision scores increase and, beyond that, either saturate or
marginally decrease.

6.1 Effect of Hyperparameters
Untargeted Attacks. For all experiments in the main paper, we
set λ1 = 0.1 and λ2 = 1 as in [10]. Furthermore, we set the
weights of the additional terms λ3 and λ4 to the values of λ1 and
λ2, respectively. This is motivated by the fact that our additional
loss components perform similar task to those weighted by λ1 and
λ2. We name the configuration with the above-mentioned values
as the default configuration. We then independently vary each
parameter while fixing the remaining ones to the default values
on SiamesRPN++ [12] with ε = 8.

As shown in Table 11, varying λ1 and λ3, encoding the
classification loss terms, evidences that the default value of
0.1 performs the best for both the OTB100 [36]. Furthermore,
Table 12 shows that varying λ2 and λ4, associated with the
regression terms, highlights that the results are stable for values
in the range of 0.001 to 1. Nevertheless, the default value of 1
for λ4 indeed yields the best results. Besides, λ2 = 10 performs
marginally better than the default setting of λ2 = 1.

Targeted Attacks. We perform a similar ablation study for tar-
geted attacks on Siamese RPN++(M) [12] black-box tracker with
ε = 16. We report the results in Tables 13, 15, 14, and 16,
corresponding to varying λ1, λ2, λ3 and λ4, respectively, on
OTB100. In Table 13, we observe that setting λ1 in the range
of 0.1 to 1 yields the best results. In addition, we observe from
Table 14 that λ3 = 1 performs better than the default value of 0.1.
Moreover, from Tables 15, 16, we find that λ2 = λ4 = 10 yields
better precision scores than the default value of 0.1.

7 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative results for different attack set-
tings. In Figure 6, we show the tracking outputs with offset-based

Methods SiamBAN SiamCAR SiamRPN++(M)

FPS(↑) EAO (↑) Re (↓) FPS(↑) EAO (↑) Re (↓) FPS(↑) EAO (↑) Re (↓)

Normal 72.3 0.340 69 71.2 0.36 60 94.3 0.40 51
IoU 1.62 0.114 269 2.45 0.189 165 3.53 0.117 289
Ours 71.7 0.024 1075 70.2 0.056 686 90.4 0.029 1037

TABLE 9: Comparison with black-box IoU attack on VOT2018. We report
untargeted attack results with ε = 8.

λ4 SiamRPN++ (M) SiamBAN SiamCAR

23 0.393 0.256 0.266
12 0.544 0.257 0.295
8 0.308 0.181 0.186
4 0.273 0.155 0.173

TABLE 10: Impact of the number of directional perturbations
K for 3 black-box trackers with offset-based targeted attacks on
OTB100. We report precision scores averaged over four cases for
ε = 16 and (∆x,∆y) = (80, 80).

λ1
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)

0.001 0.536 0.711 0.562 0.762 0.618 0.817 0.592 0.783
0.01 0.352 0.472 0.322 0.421 0.491 0.641 0.503 0.672
0.1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
1 0.321 0.451 0.272 0.352 0.342 0.44 0.401 0.531
10 0.352 0.501 0.363 0.501 0.413 0.572 0.521 0.721
100 0.321 0.482 0.395 0.556 0.392 0.547 0.538 0.774

(a) Varying λ1

λ3
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)

0.001 0.307 0.433 0.325 0.444 0.423 0.571 0.452 0.662
0.01 0.031 0.412 0.261 0.332 0.351 0.462 0.401 0.541
0.1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
1 0.471 0.642 0.38 0.491 0.562 0.742 0.502 0.641
10 0.442 0.601 0.38 0.501 0.482 0.623 0.501 0.602
100 0.471 0.632 0.443 0.579 0.543 0.718 0.488 0.638

(b) Varying λ3

TABLE 11: Impact of varying λ1 and λ3 (corresponding to the
classification losses Lcls

fool and Lcls
shift) independently for untargeted

attacks on OTB100 [36]. Setting λ1, λ3 to 0.1 performs consistently
well on all black-box trackers.

λ2
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)

0.001 0.317 0.411 0.218 0.268 0.440 0.568 0.460 0.606
0.01 0.378 0.497 0.255 0.322 0.427 0.552 0.464 0.604
0.1 0.371 0.482 0.254 0.324 0.431 0.554 0.451 0.589
1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
10 0.162 0.207 0.158 0.195 0.304 0.398 0.325 0.420
100 0.257 0.409 0.313 0.465 0.300 0.427 0.375 0.641

(a) Varying λ2

λ4
SiamRPN++(M) SiamBAN SiamCAR Ocean-online

S (↑) P(↑) S (↑) P(↑) S (↑) P(↑) S (↑) P(↑)

0.001 0.233 0.304 0.206 0.268 0.341 0.441 0.411 0.558
0.01 0.261 0.341 0.211 0.262 0.362 0.461 0.423 0.561
0.1 0.261 0.350 0.232 0.291 0.351 0.462 0.43 0.572
1 0.212 0.272 0.198 0.253 0.292 0.374 0.338 0.440
10 0.421 0.571 0.32 0.412 0.532 0.691 0.501 0.661
100 0.452 0.626 0.363 0.472 0.514 0.678 0.482 0.658

(b) Varying λ4

TABLE 12: Impact of varying λ2 and λ4 (corresponding to the
classification losses Lcls

fool and Lcls
shift) independently for untargeted

attacks on OTB100 [36]. Setting λ2, λ4 to 1 performs consistently
well on all black-box trackers.

targets on SiamRPN++(M) [12]. We observe that the universal
directional perturbations are concentrated along the targeted di-
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λ1 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.233 0.141 0.096
0.01 0.282 0.185 0.122
0.1 0.544 0.257 0.295
1 0.478 0.365 0.346

10 0.129 0.185 0.326
100 0.007 0.007 0.017

TABLE 13: Impact of varying λ1 for offset-based targeted attacks
on 3 black-box trackers on OTB100. We report precision scores for
ε = 16 and (∆x,∆y) = (80, 80).

λ3 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.161 0.141 0.126
0.01 0.327 0.243 0.251
0.1 0.544 0.257 0.295
1 0.446 0.334 0.254

10 0.313 0.288 0.282
100 0.326 0.258 0.113

TABLE 14: Impact of varying λ3 for offset-based targeted attacks
on 3 black-box trackers on OTB100. We report precision scores for
ε = 16 and (∆x,∆y) = (80, 80).

λ2 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.398 0.294 0.240
0.01 0.380 0.283 0.208
0.1 0.394 0.311 0.270
1 0.544 0.257 0.295

10 0.535 0.383 .485
100 0.009 0.008 0.005

TABLE 15: Impact of varying λ2 for offset-based targeted attacks
on 3 black-box trackers on OTB100. We report precision scores for
ε = 16 and (∆x,∆y) = (80, 80).

λ4 SiamRPN++ (M) SiamBAN SiamCAR

0.001 0.479 0.339 0.359
0.01 0.457 0.357 0.321
0.1 0.428 0.301 0.267
1 0.544 0.257 0.295

10 0.551 0.343 0.404
100 0.136 0.179 0.106

TABLE 16: Impact of varying λ4 for offset-based targeted attacks
on 3 black-box trackers on OTB100. We report precision scores for
ε = 16 and (∆x,∆y) = (80, 80).

rection and typically align with the target bounding box region.
Furthermore, in Figures 7 and 8, we visualize the outputs for
untargeted attacks without and with shift loss. Our results indicate
that the generated perturbation concentrate around the center
region and fool the tracker within the first few frames.

8 CONCLUSION

We have shown the existence of transferable universal perturba-
tions to efficiently attack black-box VOT trackers on the fly. To
do so, we have introduced a framework that relies on generating
a one-shot temporally-transferable perturbation by exploiting only
the template as input, thus being invariant to the search environ-
ment. Our trained generator produces perturbations that are quasi-
agnostic to the input template, and are thus highly transferable
to unknown objects. Furthermore, we have demonstrated that our
universal directional perturbations allow us to steer the tracker to

follow any specified trajectory. We believe that our work highlights
the vulnerability of object trackers and will motivate researchers
to design robust defense mechanisms.
Acknowledgments. This work was funded in part by the Swiss
National Science Foundation.
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Fig. 6: Qualitative results for offset-based targeted attacks on the SiameseRPN++(M) [12] tracker to follow the ground-truth with a fixed
offset of 80 pixels with ε = 16. We visualize the tracking outputs along with the adversarial search images and the directional perturbations.
Green represents the ground-truth bounding box, red represents the target bounding box, and yellow represents the predicted bounding box.
We observe that the perturbation is concentrated along the direction of the target bounding box.
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Fig. 7: Qualitative results for untargeted attacks with our approach (Ours) on the SiameseRPN++(M) [12] tracker with ε = 16. We
visualize the tracking outputs, the adversarial search regions and the single temporally transferable directional perturbation computed from
the object template. Green represents the ground-truth bounding box, and yellow represents the predicted bounding box. We observe that the
perturbation is concentrated around the center region and effective to fool the tracker for the entire video sequence.

Fig. 8: Qualitative results for untargeted attacks with our approach(Oursshift ) on the SiameseRPN++ [12](M) tracker with ε = 8. We
visualize the tracking outputs, the adversarial search regions and the single temporally transferable directional perturbation computed from
the object template. Green represents the ground-truth bounding box, and yellow represents the predicted bounding box. We observe that the
perturbation is concentrated around the center region and effective to fool the tracker within a few frames.


