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Abstract. As 3D human pose estimation can now be achieved with very
high accuracy in the supervised learning scenario, tackling the case where
3D pose annotations are not available has received increasing attention.
In particular, several methods have proposed to learn image represen-
tations in a self-supervised fashion so as to disentangle the appearance
information from the pose one. The methods then only need a small
amount of supervised data to train a pose regressor using the pose-related
latent vector as input, as it should be free of appearance information. In
this paper, we carry out in-depth analysis to understand to what degree
the state-of-the-art disentangled representation learning methods truly
separate the appearance information from the pose one. First, we study
disentanglement from the perspective of the self-supervised network, via
diverse image synthesis experiments. Second, we investigate disentan-
glement with respect to the 3D pose regressor following an adversarial
attack perspective. Specifically, we design an adversarial strategy focus-
ing on generating natural appearance changes of the subject, and against
which we could expect a disentangled network to be robust. Altogether,
our analyses show that disentanglement in the three state-of-the-art dis-
entangled representation learning frameworks if far from complete, and
that their pose codes contain significant appearance information. We be-
lieve that our approach provides a valuable testbed to evaluate the degree
of disentanglement of pose from appearance in self-supervised 3D human
pose estimation.

1 Introduction

Monocular 3D human pose estimation has been at the heart of computer vi-
sion research for decades, and tremendous results can now be achieved in the
supervised learning setting [22, 14, 15, 27, 38, 29, 23, 37, 28, 33, 21]. Unfortunately,
obtaining 3D pose annotations for real images remains very expensive, partic-
ularly in the wild. As such, self-supervised learning approaches have received
an increasing attention in the past few years [32, 31, 12, 5]. One of the common
factors across all these methods is their aim to learn a latent representation of
the image that disentangles the person’s pose from their appearance. In prac-
tice, as shown in Figure 1, this has been achieved by leveraging access to either
multiple views [31, 32] or video sequences [5, 12] during training. In either case,
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Fig. 1. Disentanglement-based
Representation Learning. Given
a reference frame and another frame
from either a different view or a dif-
ferent time instant, an encoder learns
a representation separated into two
components, appearance and pose,
in a self-supervised fashion. A pose
regressor is then trained using limited
annotated data to map the latent pose
vector to a 3D human pose.
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one then only needs access to a small amount of supervised data to effectively
train a pose regressor from the pose-related portion of the latent code to the
actual 3D pose, because this portion of the latent code should in theory contain
only pose-relevant information.

Despite the impressive progress of these self-supervised 3D human pose es-
timation methods, several fundamental questions about their learnt represen-
tations remain unanswered. For example, to what extent are the pose and ap-
pearance latent vectors disentangled? Do these two representations contain truly
complementary information, or do they share some signal? How do the different
sources of self-supervision, i.e., multiple views or temporal information, affect
the disentanglement of these representations?

In this paper, we seek to provide a deeper understanding of such disentangled
representations by analyzing the resulting latent spaces in two ways. First, we
study the disentanglement of the latent pose and appearance vectors with respect
to the self-supervised representation learning network. In this context, we analyze
both the images synthesized by altering the appearance codes in different ways,
and the influence on pose and appearance of different channels in the latent pose
codes. Second, we investigate the disentanglement with respect to the supervised
3D pose regressor. To this end, we follow an adversarial attack strategy, aiming to
modify the subject’s appearance so as to affect the regressed 3D pose. However,
instead of exploiting a standard adversarial attack technique [20, 18, 10], against
which disentangled pose networks were never meant to be robust, we design
a dedicated framework that should be much more favorable to such networks.
Specifically, we seek to alter only the latent appearance vector so as to affect
the 3D pose regressed from the latent pose vector extracted from the image
synthesized using the modified appearance vector with the original pose one.

Our experiments on the state-of-the-art disentangled representation learning
frameworks, NSD [31], CSSL [12] and DRNet [5], evidence that, across the board,
disentanglement is not complete and the pose codes of these frameworks contain
appearance information. Our work provides the tool to study the effectiveness of
different disentanglement-based training strategies and will serve as a valuable
testbed to analyze the extent of disentanglement in future frameworks.

Contributions. To summarize, our contributions are twofold. (1) We system-
atically analyze the latent pose and appearance representations in several rep-
resentative disentangled networks. Our experiments lead to an interesting find-
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ing that the latent pose vectors contain almost all of the subject’s appearance
information. (2) We introduce an adversarial strategy to understand the disen-
tanglement of 3D pose from natural appearance changes. Our code and trained
networks will be made publicly available upon acceptance.

2 Related Work

Disentanglement-based 3D Human Pose Estimation. Disentangling pose
and appearance in 3D pose estimation was first proposed in DRNet [5], where a
discriminator was employed to distinguish if the time-varying features from two
images represented the same subject or not. Furthermore, the distance between
the time-invariant, i.e., appearance, component of one subject at two different
time instants was minimized, and the time-varying pose features were encour-
aged to be indistinguishable across subjects, thereby ensuring that appearance
information did not leaked into the pose features. In [31, 32], disentanglement
was achieved via the use of multiple views during training, leveraging the in-
tuition that, for one subject, the pose features extracted from one view and
rotated to a different view at the same time instant should be the same as
those directly extracted from that view, and the appearance features at different
time instants should be similar so as not to contain pose information. More re-
cently, [12] designed a contrastive loss to force the latent appearance features in
temporally-distant frames to remain close while encouraging the pose features to
be different from each other. All these methods learn the disentangled represen-
tation from unsupervised data, and then train a shallow regressor to predict 3D
pose from the pose latent vector using a limited amount of pose labels. In this
work, we study how disentangled the appearance and pose features extracted
by these methods truly are. To this end, we provide analyses based on diverse
image synthesis experiments and on adversarial attacks.
Adversarial Attacks. Deep neural networks were first shown to be vulner-
able to adversarial examples in [36]. Following this, several attacks have been
proposed, using either gradient-based approaches [10, 18] or optimization-based
techniques [3, 26, 25, 4, 7]. To study the disentanglement of pose and appearance
in 3D human pose estimation, we seek to analyze if appearance changes can af-
fect the regressed 3D pose. In principle, we could use any of the above-mentioned
attack strategy to do this. However, they offer no control on the generated per-
turbations, and thus could potentially incorporate structures that truly suggest
a different pose. In other words, the disentangled networks cannot be expected
to be robust to such attacks. Therefore, we design an attack strategy to which
they can be expected to be robust. Specifically, we synthesize an image by modi-
fying only the appearance code of the network of interest, and show that the 3D
pose regressed from that image will typically differ from the original one. Our
attacks can be thought of as inconspicuous ones, as the generated image looks
natural, with only appearance changes to the subject. Other works [41, 16, 30, 35,
2, 34] have designed strategies to generate realistic adversarial images, typically
focusing on face recognition datasets and using GANs [9, 24, 1]. Our approach
nonetheless fundamentally differs from those in both methodology and context;
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our main goal is not to attack disentangled 3D human pose networks but to study
their level of disentanglement. Therefore, we design an attack strategy that is
most favorable for these networks, and against which they can be expected to
be naturally robust.
Measuring Disentanglement. In other contexts than human pose estimation,
several works have proposed metrics to quantify the degree of disentanglement
of latent vectors [8, 6, 19]. These methods are of course also applicable to the
self-supervised learning frameworks that we will analyze, and we will report
these metrics in our experiments. However, these metrics do not provide any
understanding of where disentanglement fails. This is what we achieve with our
diverse analyses.

3 Disentangled Human Pose Estimation Networks

Given an image as input, 3D human pose estimation aims to predict the 3D
positions of J body joints, such as the wrists, elbows, and shoulders. When no
annotations are available for the training images, an increasingly popular ap-
proach consists of learning a latent representation that disentangles appearance
from pose in a self-supervised fashion. Here, we review disentanglement-based
3D human pose estimation frameworks that we will analyze in Sections 4 and 5.

Existing disentanglement-based frameworks essentially all follow the same
initial steps. The input image I is first passed through a spatial transformer
network S to extract the bounding box corresponding to the human subject.
An encoder E then takes the cropped bounding box Ic as input and outputs
a latent vector h comprising two components, that is E : Ic → [ha,hp]. The
first component, ha, aims to encode the subject’s appearance while the second,
hp, should represent the subject’s pose. The networks are trained without any
3D pose annotations, and thus supervision is achieved via image reconstruc-
tion. Specifically, a decoder D takes the complete the latent vector h as input
and and outputs a reconstructed version of the cropped image Ĩc, with an ad-
ditional mask M corresponding to the subject’s silhouette. The cropped image
is further merged with a pre-computed background image B to obtain the final
reconstructed input image Ĩ.

The main difference between existing frameworks lies in the way they en-
courage the disentanglement of pose and appearance. Specifically, the different
frameworks train the encoder E and decoder D as follows:
NSD [31]. The neural scene decomposition (NSD) approach leverages the avail-
ability of multiple views during training. Given a pair of images from two views
at time t, NSD passes one image to the encoder to obtain an appearance vector
ht
a and a pose vector ht

p. The pose vector ht
p, shaped as a 3D point cloud, is ro-

tated to the second view using the ground-truth camera calibration between the
two views to obtain a transformed pose vector ht

p,r. Furthermore, to factor out
appearance from pose, NSD replaces the appearance vector ht

a by an appearance
vector ht1

a of the same subject at a different time instant t1. The decoder D then
takes as input h = [hp,r,h

t1
a ] and aims to reconstruct the image from the second

view at time t.
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CSSL [12]. Instead of using multiple views, contrastive self-supervised learning
(CSSL) exploits temporal information from videos to learn a latent representa-
tion of pose and appearance. To achieve disentanglement, CSSL encourages the
distance between the latent pose vectors ht1

p and ht2
p of two frames, t1 and t2,

to reflect their temporal distance. Furthermore, similarly to NSD, CSSL swaps
the appearance vectors ht1

a and ht2
a of the two video frames when performing

image reconstruction so as to force them to learn time-invariant information,
thus encoding appearance.
DRNet [5]. The disentangled representation network (DRNet) uses a similar
strategy to that of CSSL, consisting of randomly choosing two temporal frames,
t1 and t2, from a video. However, DRNet aims to achieve disentanglement in
two ways: (1) By minimizing the distance between the two appearance vectors
ht1
a and ht2

a ; and (2) by exploiting an adversarial network to make the pose
vector hp independent of the subject’s appearance. Specifically, this is achieved
by training the additional discriminator to output the subject’s identity given
the pose vector as input, and training the encoder E in an adversarial fashion
to fool the discriminator.

Once trained on a large corpus of unannotated images in a self-supervised
manner, the frameworks discussed above employ a 2 layer pose regressor ϕ :
hp → q to predict the 3D pose q from the latent pose vector hp. This pose
regressor is trained with a small amount of supervised data, while freezing the
weights of the encoder. Due to space limitations, we provide additional details
about training in the supplementary material.

4 Disentanglement w.r.t. the Self-Supervised Network

In this section, we study the disentanglement of pose and appearance within
the self-supervised representation learning network itself. To this end, we first
analyze the impact of the latent appearance vector on the images synthesized
by the network’s decoder. We then turn to investigating the influence on pose
and appearance of different channels in the latent pose vector.

4.1 Effect of the Appearance Vector on Synthesized Images

Our first analysis consists of visualizing the images generated by the network’s
decoder. In particular, we leverage the intuition that, if the pose and appearance
vectors were disentangled, altering the appearance vector while keeping the pose
one fixed should yield images with a different subject’s appearance but the same
pose. We investigate this via the two strategies discussed below.

First, we synthesize novel images by mixing the appearance and pose informa-
tion from two subjects, S8 and S7. The top two rows of Figure 2 show the images
synthesized with DRNet3 without mixing the appearance vectors; these images
look similar to the original ones, depicting two clearly different subject’s appear-
ances. By contrast, the images in the third to fifth row of the figure, obtained

3 Similar images for the other networks are provided in the supplementary material.
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(c) Rendered with S7 Pose and S8 Appearance using DRNet

(a) Synthesised Images of S7 using DRNet

(b) Synthesised Images of S8 using DRNet

(d) Rendered with S7 Pose and S8 Appearance using NSD

(e) Rendered with S7 Pose and S8 Appearance using CSSL

Fig. 2. Synthesizing novel images. We take the pose information from S7 (first row)
and the appearance information from S8 (second row) and synthesize novel images in
the third, fourth and fifth rows using DRNet, CSSL and NSD. The synthesized images
retain some appearance information (red shirt) of S7 although we only use S7’s pose
code in the synthesis.

by using S7’s pose vector and S8’s appearance one, still contain appearance in-
formation of S7. This is particularly the case for the images synthesized using
DRNet and NSD, in which the subject’s shirt has taken the red color of that of
S7, although we use only S7’s pose code in the synthesis process. CSSL is less
subject to such failures, but they nonetheless occur in some cases, such as in the
third and fourth columns.

As a second experiment, we replace the appearance vector with a zero vector.
We then combine this zero appearance vector with the pose vector obtained
from the original image shown in the first row of Figure 3. As can be seen
from the second row, even though we use the same zero appearance vector to
generate images of different subjects, the synthesized images retain almost all
the appearance information of the original images, except near the head region.

Both of these experiments evidence that the pose code contains a significant
amount of appearance information and that the disentanglement is thus not
complete. Nevertheless, both experiments also show that modifying the appear-
ance code indeed does not impact the subject’s pose in the synthesized image. To
further verify whether the appearance codes are truly free of pose information,
we visualize the appearance codes of all images of a S7 using t-SNE in Fig-
ure 4. The resulting plot shows nicely-separated clusters, which can be observed
to correspond to action categories. This suggests that, although modifying the
appearance code does not visually change the subject’s pose in the synthesized
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Fig. 3. Replacing the appearance code with a fixed zero vector. In the first
row, we show the original synthesized images for three subjects on different networks.
In the second row, we set the values in the appearance vector to zero and use the same
pose vectors as in the first row. Despite using the same zero appearance vector for all
subjects, the outputs do not appear similar in content and instead retain almost all
the appearance information of the original images.
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Fig. 4. tSNE visualization of appearance codes. The appearance codes of images
from same subject S7 are clustered according to the action performed by the subject.
This indicates that the appearance code still contains information about the pose. Best
viewed in color and zoomed in.

images, the appearance codes still contain information about the subject activity,
and thus about their pose.

4.2 Effect of the Pose Vector on Synthesized Images

In this section, we study the impact of the pose vector on the synthesized images
and further provide evidence of the presence of appearance information in the
pose code. To this end, we identify channels encoding appearance information
in the pose code. Our approach is based on the idea that two images depict-
ing different subjects in similar poses should ideally have similar latent pose
codes. The channels that have large differences therefore indicate the presence
of appearance information.

To illustrate this, we use the two images shown in Figure 5(a) and plot the
absolute difference between the corresponding pose codes obtained by NSD4 in
Figure 5(b), ordering the channels by the magnitude of the difference. The latent
pose indeed disagree in many channels. We define the probability of a channel to
encode appearance information to be proportional to the absolute pose vector
difference for that channel. Below, we then analyze the effect of altering the K
channels with highest or lowest appearance probability.

4 Similar plots for the other networks are provided in the supplementary material.
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(a) Two images with similar poses but
different appearances.

(b) Absolute difference between the
pose codes sorted by magnitude.

Fig. 5. Detecting appearance channels in the pose latent vector. We take
images depicting different subjects in a similar pose, for which we could expect the pose
codes to be close. However, as shown on the right, the latent pose vectors obtained by
NSD contain channels with large differences, likely to encode appearance information.

K=100 K=200 K=300 K=400 K=500 K=600

K=100 K=200 K=300 K=400 K=500 K=600

Image BImage A

(a) NSD

Replace the K lowest appearance probability channels of  pose vector of A with B

Replace the K highest appearance probability channels of  pose vector of A with B

Image A

K=100 K=200 K=310 K=400 K=500

Image B

(b) DRNet

K=100 K=200 K=300 K=330 K=500 K=600

Replace the K lowest appearance probability channels of  pose vector of A with B

Replace the K highest appearance probability channels of  pose vector of A with B

K=600

Fig. 6. Influence of the pose code channels. To synthesize the images in the
middle portion of the figure, we take the appearance code corresponding to image A,
and vary the pose code in two ways. Specifically, in the top (or bottom) portion of
the figure, we replace the K channels with lowest (or highest) appearance probability
with the corresponding ones from the pose code extracted from image B. (a) For
NSD, replacing the K = 500 lowest appearance probability channels yields an image
(highlighted with a red box) depicting B’s pose and A’s appearance. Similarly, replacing
the K = 200 highest appearance probability channels produces B’s appearance and A’s
pose. (b) We observe similar trends for DRNet, although the separation of appearance
and pose inside the pose code is not as clear as for NSD.

To this end, we take two images A and B, as shown in the left and right
ends of Figure 6, fix the appearance code as that of A. We then replace the
channels with either the K lowest or highest appearance probability in the pose
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code of A with the corresponding values from the pose code of B. Note that all
disentangled networks have a pose code of dimension 600, and therefore K = 600
means replacing all the channels of the pose vector.

As shown in Figure 6(a) for NSD, by replacing the K = 500 lowest appear-
ance probability channels yields an image (highlighted with a red box) with A’s
appearance and B’s pose. Furthermore, replacing the K = 200 highest appear-
ance probability channels synthesizes an image with B’s appearance and A’s
pose. Both these results indicate that the top 100-200 highest probability ap-
pearance channels in the pose code indeed encode the appearance information
for NSD. It is worth noting that with K = 600 the image depicts both the pose
and appearance of B, confirming our previous experiments in Figure 2.

Figure 6(b) for DRNet shows the channels are not as clearly separated in pose
and appearance ones in this method. Nevertheless, the pose codes still combines
pose and appearance information. We present similar analysis and visualizations
for CSSL in the supplementary material.

5 Disentanglement w.r.t. the 3D Pose Regressor

The previous set of analyses have focused on the self-supervised representation
learning networks themselves, evidencing that the latent pose vector is contam-
inated with appearance information. Here, we further investigate the disentan-
glement w.r.t. the supervised 3D human pose regressor, which takes the latent
pose vector as input. Note that, since the 3D pose regressor is disassociated from
the appearance vector at network level, studying the appearance and pose vector
disentanglement in this context is not straightforward. Therefore, we consider
the pose estimation network comprised of the self-supervised encoder and the
supervised decoder as a standalone network and study the effects of the input
image appearance on its 3D pose output. To this end, we introduce an adversarial
perturbation strategy that explicitly focuses on modifying only the appearance
information in the input image. Below, we first describe our attack framework,
and then analyze its effects on the disentangled pose estimation networks.

5.1 Appearance-only Attack Framework

Our goal is to perturb only the subject’s appearance in the input image; perturb-
ing the image such that the subject’s pose visually changes would of course make
the pose regressor output a different pose but would not allow us to verify the
disentanglement of pose and appearance. To enforce such a constraint on our
perturbations, we follow a strategy that, intuitively, should constitute a weak
attack and thus be favorable to the disentangled network. Specifically, we only
perturb the latent appearance vector, which we combine with the original pose
one to generate an adversarial image. We then extract a new latent pose vector
from this image and predict the 3D human pose from it. If the pose regressor
could discard the appearance information, it would thus not be affected by this
perturbation.
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As shown in Algorithm 1, we generate an adversarial image Iadv as using
a generator network G. In practice, we take G to be either the disentangled
network of interest or another disentangled network, and we will report results
with both strategies. First, we pass the original input image to the generator’s
spatial transformer Gs and extract the cropped image Ic using the resulting
bounding box. We then encode the cropped image Ic into an initial latent pose
vector h̃0

p and latent appearance vector h̃0
a using the generator’s encoder Ge. The

combined latent vector h̃ = [h̃0
a, h̃

0
p] is then passed as input to the generator’s

decoder Gd, which outputs the reconstructed image Ĩ0c and a mask M0. The
cropped output Ĩ0c is then combined with the pre-computed background image
B to resynthesize an image I0adv at full resolution. This image then acts as
input to the target pose estimation network, which encompasses an encoder E,
that may differ from the generator one Ge, and a pose regressor. This forward
pass produces an initial pose estimate ϕ(h0

p). Note that the output of the target
network given I0adv as input has empirically a small mean per-joint position error
(MPJPE) of around 20 mm with respect to the prediction q obtained from the
original image I. This is because, at this point, no attack has been performed.

To attack only the subject’s appearance in the adversarial input, we fix the
pose vector h̃p = h̃0

p to generate images of depicting the subject in their orig-
inal pose. Furthermore, we also fix the mask to its initial value M = M0. We
then compute an appearance-only perturbation by optimizing the latent appear-
ance vector h̃a in an iterative manner until it either achieves an MPJPE error
with respect to the original prediction q0 higher than a threshold, or reaches
a maximum number of iterations. Note that our previous set of experiments in
Section 4 have evidenced that modifying the appearance vector does not change
the observed subject’s pose, which validates our use of the network’s decoder to
generate the appearance-modified image.

5.2 Appearance-only Attack Results

Qualitative Results. In Figure 7, we visualize the results of different models
on the attacked images. For all disentangled representation frameworks, small
changes in appearance produce wrong predictions. In particular, as shown in the
third row, a small change in the shirt color leads to a completely different pose
for all models. This demonstrates that the pose estimation network is dependent
on the subject’s appearance in the input image that its intermediate latent pose
vector is not completely disentangled from appearance.

Quantitative Study. We provide the results of our appearance-only attacks in
Table 1 using the network decoder as the generator. We report the MPJPE at
the initial iteration and after the attack for each subject. Specifically, the initial
error corresponds to the error between the predictions obtained from the original
image I and from the synthesized image I0adv, without any latent attack. It is
around 21.8 mm on average. This shows that the generator faithfully reconstructs
the input image and can therefore be employed to perform the attack. After the
attack, the performance decrease across all the disentangled models In other



Understanding Pose and Appearance Disentanglement 11

Algorithm 1 Appearance-only attacks

Require: I: Input image, G: Pre-trained generator (with spatial transformer Gs, en-
coder Ge and decoder Gd), S: Target spatial transformer, E: Target encoder, D:
Target image decoder, ϕ: Target pose regressor

1: Ic ← Gt(I), [h̃
0
a, h̃

0
p]← Ge(Ic)

2: I0adv = Gd(h̃
0
a, h̃

0
p), [h

0
a,h

0
p]← E(S(I0adv))

3: [ha,hp]← E(S(I)),

4: q← ϕ(hp)), error0 =
∥∥q− ϕ(h0

p)
∥∥2

5: i← 1
6: while do errori ≤ min. error and i ≤ max. iterations
7: Iiadv ← Gd(h̃

i
a, h̃

0
p)

8: [hi
a,h

i
p]← E(S(Iiadv))

9: errori ←
∥∥q− ϕ(hi

p)
∥∥2

10: h̃i+1
a ← BackProp {errori}

11: i← i+ 1
12: end while
13: return Iadv = Iiadv
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Fig. 7. Apperance-only Attack Examples. Given an input image (a) with ground-
truth pose (d), we first reconstruct (b) the images using a generator. By optimizing
the latent appearance vector, we obtain an adversarial image (c) that aims to fool
the pose regressor so that it outputs a 3D pose (f) that differs significantly from the
original predictions (e).

words, all models are vulnerable to our appearance-based attacks and typically
reach an MPJPE of at least 175 mm. This indicates that the latent pose vector
hp is not invariant to appearance changes and therefore that the appearance-
pose disentanglement is not complete. We provide ablative study using the same
NSD decoder as the generator for all disentangled networks in the supplementary
material.
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To further evaluate quantitatively the sensitivity of a disentangled network
to our appearance-only attacks, we computed three image-based metrics, Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean
Square Error (MSE), to compare the attacked images with those synthesized
with the original framework. As shown in Table 2, the three metrics indicate
that the images obtained by attacking DRNet are more similar to the original
synthesized ones than those obtained by attacking NSD or CSSL. This suggests
that DRNet can be attacked with smaller changes, and thus contains more ap-
pearance information in its pose vectors.

Altogether, our experiments evidence that disentangling pose and appearance
in an unsupervised manner for 3D human pose estimation remains far from being
solved. Our attacks thus provide a valuable testbed to valuate the effectiveness
of future disentanglement-based frameworks.

Subject
NSD DRNet CSSL Average

Initial Final Initial Final Initial Final Initial Final

S1 21.0 179.7 23.9 169.7 21.5 176.9 21.6 174.2
S5 19.6 180.0 14.1 166.7 25.3 186.5 19.6 177.1
S6 22.3 179.8 23.5 177.9 26.8 196.7 23.4 184.7
S7 18.8 179.2 17.6 177.5 24.1 191.8 20.3 182.3
S8 16.8 178.6 21.7 198.9 30.5 186.9 23.0 187.8

Average 19.7 179.5 20.2 177.5 25.6 207.5 21.8 176.8

Table 1. MPJPE before and after our
appearance-based attacks. We report the
results of three networks and observe that
disentangled networks are vulnerable to our
attacks.

Metric NSD DRNet CSSL

SSIM↑ 0.947 0.963 0.943
PSNR↑ 24.65 26.45 24.37
MSE↓ 0.012 0.007 0.013

Table 2. Quantitative comparison
of adversarial images with the origi-
nal synthesized images. These num-
ber show that the images obtained
by attacking DRNet are closer to the
original synthesized ones, and thus
that the DRNet pose vectors tend
to contain more appearance informa-
tion.

6 Discussion

Evaluating Disentanglement. Several methods [8, 6, 19] have been proposed
for assessing the degree of disentanglement of latent variables. In particular, we
report the two complementary state-of-the-art metrics of [19], Distance Corre-
lation (DC) and Information over Bias (IOB) to evaluate disentanglement. DC
is bounded in [0,1] and measures the correlation between the two latent spaces;
IoB measures the amount of information from the input image that is encoded
in a given latent space. In Table 3, we provide these metrics, averaged over
400 images, for the pose (P) and appearance (A) latent spaces and for differ-
ent disentanglement strategies. DC(A, P) contain large values indicating that
the appearance and pose are correlated. Furthermore, the IOB(I, P) values are
larger than the IOB(I, A), which suggests that the pose code encodes more input
information than the appearance code. Note that DC(A, P) cannot be used as
a standalone metric to interpret disentanglement because low values of DC can
also indicate noise in one latent space. While DRNet achieves the best DC(A,
P) score, its value of 0.90 IOB(I, A) suggests that the appearance code encodes
minimal information. Although these metrics quantify disentanglement, they of-
fer little understanding of the disentanglement issues, and IOB is difficult to
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interpret because it is unbounded and requires training an external decoder net-
work whose optimal architecture is unknown. By contrast, our analyses enable a
finer-grain understanding of the pose and appearance latent spaces of represen-
tation learning strategies for human pose estimation, and provide visual results
that are easier to interpret.

Metric NSD DRNet CSSL

DC(A, P)↓ 0.88 0.59 0.77
IOB(I, A)↑ 0.79 0.90 0.95
IOB(I, P)↑ 1.15 1.08 1.29

Table 3. Disentanglement-related metrics
for the pose (P) and appearance (A) latent
spaces extracted from an input image (I).

Metric CSSL CSSL(DA)

SSIM↑ 0.943 0.926
PSNR↑ 24.37 22.90
MSE↓ 0.013 0.018

Table 4. Quantitative comparison of ad-
versarial images with original synthesized
images. The images obtained with DA are
less similar to original synthesized ones.

Fig. 8. Synthesizing novel images
with CSSL (DA). As in Figure 2,
we take S7’s pose vector and S8’s ap-
pearance one and synthesize novel im-
ages with CSSL, either without (top) or
with (bottom) DA during training. The
image synthesized with CSSL (DA) re-
tain S8’s appearance without residual
red shirt color from S7.

CSSL (DA)

Lying Down

Siting on Chair

Siting on Chair

Standing (front)

Standing (back)

Fig. 9. tSNE visualization of CSSL
(DA) appearance codes. The ap-
pearance codes of images from same
subject are stilll clustered according to
the action performed by the subject.

Does data-augmentation help to learn appearance-invariant features?
Recently, powerful data augmentation (DA) strategies, such as AugMix [11],
CutMix [39] and others [13, 40], have been proposed to improve the generaliza-
tion power and robustness of neural networks. Furthermore, classical adversarial
training [20, 17] can be viewed as a form of data augmentation with adversarial
images. Here, we therefore study if data augmentation constitutes a promising
direction towards more effectively disentangling self-supervised 3D human pose
estimation networks.
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Fig. 10. Zero appearance vectors with CSSL (DA). In first row, we show the
original image synthesized with CSSL. While, without DA (middle), the synthesized
images obtained with a zero appearance vector retain the original subject’s appearance,
with DA (bottom), all the subjects have a similar the appearance. This suggests that
DA helps to remove appearance information from the pose vectors.

Since the network architectures we consider are much more complicated than
the image recognition ones used in the above-mentioned DA works, we employ
a simpler DA strategy consisting of augmenting the output of the spatial trans-
former with RGB jitter. We then re-run the analyses we presented before, focus-
ing here on CSSL. Specifically, in Figure 8, we show the images synthesized when
mixing S7’s pose vector with S8’s appearance. Note that, with DA, the images
better retain the appearance of S8. Furthermore, in Figure 10, we show images
obtained by making use of a zero appearance vector. With DA, all the synthe-
sized images depict a similar subject appearance. Altogether, this suggests that
DA helps the disentanglement process in CSSL, which is further confirmed by
the DC(A, P) value that improves from 0.77 to 0.62. This value of 0.62 nonethe-
less still indicates a relatively high correlation between the latent spaces. To
further analyze this, we computed a similar t-SNE plot as that of Figure 9, and
observed that the actions are still clustered, evidencing that the appearance code
still contains some pose information.

Similarly, we also ran our appearance-only attacks on the CSSL model trained
with DA, and observed the attacks to remain successful, suggesting that the pose
vector remains contaminated by appearance information. To evaluate quantita-
tively whether DA nonetheless improved this, we report the PSNR, SSIM, and
MSE metrics between the attacked images and the original synthesized ones in
Table 4. The values indicate that the images obtained by attacking the network
without DA are more similar to the original synthesized ones. In other words,
CSSL (DA) requires larger changes in the input image to attack the 3D pose
regressor. Altogether, these results indicate that DA constitutes a promising
direction to improve disentanglement, and we leave the development of more
effective DA strategies as future work.

7 Conclusion

In this work, we have analyzed the latent vectors extracted by self-supervised
disentangled networks for 3D human pose estimation. Specifically, we have stud-
ied the disentanglement of pose and appearance from the perspective of both
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the representation learning network, and the supervised 3D human pose regres-
sor. In the former case, our analyses via diverse image synthesis strategies have
evidenced that the state-of-the-art disentanglement-based representation learn-
ing networks do not truly disentangle pose from appearance, and in particular
that the latent pose codes contain significant appearance information. In the
latter, we have shown that disentanglement-based networks were not robust to
appearance-only adversarial attacks, despite these attacks being designed to be
as favorable as possible to the disentanglement-based frameworks. We believe
that our analysis methodology and our semantic attacks will be beneficial to
improve disentanglement-based representation learning in the future, and thus
positively impact self-supervised 3D human pose estimation.
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