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Contributions

1. Interpreting  Adversarial Attacks:

We analyze and explain the decisions of fine-grained recognition networks by 
studying the image regions responsible for classification for both clean and 
adversarial examples.

2. Adversarial Defense:

We design an interpretable, attention-aware network for robust fine-grained 
recognition by constraining the latent space of discriminative regions. 



Modules: Interpretable Fine-grained Network

ProtoPNet Architecture

Prototype 
Similarity 

maps

Positive weights b/w a class k 
prototype and the class k logit or 

negative otherwise
Class-specific 
prototypes

Chaofan Chen et al. This Looks Like That: Deep Learning for Interpretable Image Recognition, NIPS 2019



Modules: Interpretable Fine-grained Network

Attention Pooling Architecture

Rohit Girdhar et al. Attentional Pooling for Action Recognition, NIPS 2017

For K- classes,

• K class specific filters
• 1 class agnostic filter
• Both attention maps are multiplied 

and spatially averaged to yield 
logits

K class 
specific 
filters

1 class agnostic 
filter

Feature map



Key Factors for Success of Adversarial Attacks

• Discriminative regions of two different classes being too close in feature space

Rohit Girdhar et al. Attentional Pooling for Action Recognition, NIPS 2017
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Key Factors for Success of Adversarial Attacks

Chaofan Chen et al. This Looks Like That: Deep Learning for Interpretable Image Recognition, NIPS 2019

• Discriminative regions of two different classes being too close in feature space



Key Factors for Success of Adversarial Attacks
• Use of non-discriminative regions for classification 

Chaofan Chen et al. This Looks Like That: Deep Learning for Interpretable Image Recognition, NIPS 2019



Framework

We  introduce an attention-based regularization mechanism

• Maximally separate the latent features of discriminative regions of different classes
• Minimize the contribution of the non-discriminative regions

Two regularization losses:   

Attentional-cluster cost      - Prototypes lie close to high attention regions of its own class
Attentional-separation cost - Prototypes lie away from high attention regions of other classes



Architecture

Two prediction heads.

1. Spatial attention branch to obtain discriminative regions - Ours-A
2. Feature regularization branch to maximally separate discriminative regions - Ours-FR

Prototype Similarity maps are modulated with spatial attention branch to learn 
prototypes close to high attention regions.



Proposed Architecture



Discriminative Feature Separation

Attentional Cluster Loss:

The attentional-clustering loss pulls the high-attention regions in a 
sample close to the nearest prototype of its own class.

- Attention weight at location t for image 
- feature vector  at location t for image 
- Set of prototypes belonging to class 



Discriminative Feature Separation

Attentional Separation Loss:

The attentional separation loss pushes the high-attention regions away 
from the nearest prototype of any other class.

- Attention weight at location t for image 
- feature vector  at location t for image 
- Prototypes belonging to class 



Discriminative Feature Separation

Combined regularization Loss:

We further push the non-discriminative regions away from informative 
prototypes by using attention from other images of Batch

Total Loss:



t-SNE Visualization of Learned Prototypes
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Experiments
Datasets – CUB200, Cars196 cropped images

Attacks - FGSM, BIM, PGD and MIM

Black Box Transfer attacks  - BB-V (VGG-16) and BB-D (DenseNet)

Defense  - Adversarial training with single step FGSM with random 
initialization* 

* Eric Wong et al. Fast is better than free: Revisiting adversarial training, ICLR 2020



Comparison of the Prototypes

Ours: prototypes are fine-grained and entire non-
discriminative regions is activated by single prototype  

ProtoPNet: multiple background prototypes and prototypes 
that focus on large regions 
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Learned Prototypes
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grained and entire non-
discriminative regions is 

activated by single 
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Learned Prototypes
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Comparison of the activated image regions



Results on CUB200 on Undefended Models

Table: Classification accuracy of different undefended networks with Linf based 
attacks on CUB200



Results on Cars196 on Undefended Models

Table: Classification accuracy of different undefended networks with Linf based 
attacks on Cars196.



Results on CUB200 on Robust Models

Table: Classification accuracy of different robust networks with Linf based attacks on 
CUB200.



Results on Cars196 on Robust Models

Table: Classification accuracy of different robust networks with Linf based attacks on 
Cars196.



Ablation Study

Table: Contribution of each proposed feature regularization module in 
classification accuracy of undefended VGG-16 network



Gradient Obfuscation Study

Table: Performance of VGG-16 with our proposed approach under different 
perturbation strengths.



Adversarial Detection

Table: ROC curves for adversarial
sample detection on robust VGG-
16 with PGD attack

Ours-A* and Ours-FR* performs better 
than baselines

• Compute minimum Mahalanobis 
distance from pretrained class 
conditional distributions at each layer

• Train a logistic detector on 20% samples 
and evaluated on rest 80% of adversarial 
successful cum correctly classified test 
data



Conclusion
• We have performed the first study of adversarial attacks for fine-grained 

recognition. 

• Our analysis has highlighted the key factor for the success of adversarial 
attacks in this context. 

• Designed an attention and prototype-based framework that explicitly 
encourages the prototypes to focus on the discriminative image regions  



Thank you!


