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Contributions

1. Interpreting Adversarial Attacks:
We analyze and explain the decisions of fine-grained recognition networks by
studying the image regions responsible for classification for both clean and

adversarial examples.

2. Adversarial Defense:

We design an interpretable, attention-aware network for robust fine-grained
recognition by constraining the latent space of discriminative regions.




Modules: Interpretable Fine-grained Network
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Modules: Interpretable Fine-grained Network
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Rohit Girdhar et al. Attentional Pooling for Action Recognition, NIPS 2017




Key Factors for Success of Adversarial Attacks

e Discriminative regions of two different classes being too close in feature space

Input Normal Adversarial

Black-footed albatross Laysan albatross

Black-footed
albatross

Rohit Girdhar et al. Attentional Pooling for Action Recognition, NIPS 2017
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Key Factors for Success of Adversarial Attacks

e Discriminative regions of two different classes being too close in feature space
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Key Factors for Success of Adversarial Attacks

* Use of non-discriminative regions for classification
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Chaofan Chen et al. This Looks Like That: Deep Learning for Interpretable Image Recognition, NIPS 2019




Framework

We introduce an attention-based regularization mechanism

* Maximally separate the latent features of discriminative regions of different classes
* Minimize the contribution of the non-discriminative regions

Two regularization losses:

Attentional-cluster cost - Prototypes lie close to high attention regions of its own class
Attentional-separation cost - Prototypes lie away from high attention regions of other classes




Architecture

Two prediction heads.

1. Spatial attention branch to obtain discriminative regions - Ours-A
2. Feature regularization branch to maximally separate discriminative regions - Ours-FR

Prototype Similarity maps are modulated with spatial attention branch to learn
prototypes close to high attention regions.




Proposed Architecture

Interpretable and feature regularization module (Ours-FR)
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Discriminative Feature Separation

Attentional Cluster Loss:

The attentional-clustering loss pulls the high-attention regions in a
sample close to the nearest prototype of its own class.

Lo, (I, Za min [x! — pi3
Pyi

l:p €

- Attention weight at location t for image I;
- feature vector at location t for image 1;

P.. -Setof prototypes belonging to class i

KR
Q@ Nk .~




Discriminative Feature Separation

Attentional Separation Loss:

The attentional separation loss pushes the high-attention regions away
from the nearest prototype of any other class.
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Discriminative Feature Separation

Combined regularization Loss:

We further push the non-discriminative regions away from informative
prototypes by using attention from other images of Batch
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Total Loss:
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t-SNE Visualization of Learned Prototypes
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Experiments

Datasets — CUB200, Cars196 cropped images
Attacks - FGSM, BIM, PGD and MIM
Black Box Transfer attacks - BB-V (VGG-16) and BB-D (DenseNet)

Defense - Adversarial training with single step FGSM with random
initialization™

* Eric Wong et al. Fast is better than free: Revisiting adversarial training, ICLR 2020



Comparison of the Prototypes

ProtoPNet: multiple background prototypes and prototypes

that focus on large regions
M.
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Ours: prototypes are fine-grained and entire non-
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Comparison of the Prototypes

ProtoPNet: multiple background prototypes and prototypes
that focus on Iarge regions

a) ProtoPNet
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Learned Prototypes

Prototypes learned by our attention-aware system
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Learned Prototypes

Label Prototypes learned by our attention-aware system
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Comparison of the activated image regions

ProtoPNet and Attentional Pooling
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Results on CUB200 on Undefended Models

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network (Steps,e) (0,00 (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
AP [14] 78.0% 36.5% 31.0% 27.7% 14.6% 23.5% 11.7% 30.2% 16.7% 9.6% 60.4%
© AP+ Triplet [57] 81.0% 49.5% 36.6% 33.5% 11.2% 26.5% 8.50% 37.7% 14.3% 8.54% 63.4%
(5 AP+ PCL [35] 80.0% 41.0% 33.1% 32.9% 13.6% 23.5% 9.6% 35.3% 17.1% 10.6% 65.8%
0 Ours-A 80.4% 47.2% 40.2% 40.0% 23.2% 35.3% 21.8% 42.2% 26.4% 12.9% 66.9%
> ProtoPNet [15] 69.0% 19.9% 8.10% 3.80% 0.00% 2.20% 0.00% 5.00% 0.10% 22.9% 58.5%
ProtoPNet-+Ours 73.2% 49.9% 42.2% 42.5% 35.3% 38.4% 30.1% 42.9% 37.5% 15.4% 59.7%
AP [14] 75.7% 20.4% 14.5% 13.4% 6.9% 10.5% 5.7% 14.8% 6.9% 21.1% 61.3%
t AP+ Triplet [57] 82.0% 53.9% 38.2% 35.0% 12.4% 27.7% 9.40% 39.4% 15.3% 17.40% 64.9%
('5 AP+ PCL [35] 76.9% 20.3% 14.8% 12.1% 5.7% 8.8% 4.2% 13.9% 6.8% 19.8% 60.2%
0 Ours-A 79.7% 51.4% 44.6% 42.3% 26.5% 36.8% 26.3% 45.0% 42.6% 29.8% 68.2%
> ProtoPNet [15] 73.8% 22.9% 11.1% 3.2% 0.0% 12% 0.0% 3.6% 0.0% 21.0% 58.0%
Ours-FR 75.4% 52.2% 46.3% 46.6% 41.3% 42.4% 31.0% 44.4% 37.6% 30.4% 63.7%
<+ AP [14] 79.9% 30.4% 26.3% 18.0% 7.20% 13.2% 5.8% 22.3% 8.6% 43.0% 59.4%
« AP+ Triplet [57] 78.6% 25.6% 18.7% 11.4% 2.9% 71% 1.8% 14.7% 3.8% 42.11% 58.4%
D AP+ PCL [35] 77.9% 30.1% 24.5% 21.4% 13.3% 17.6% 11.6% 23.9% 15.3% 45.7% 61.4%
Zw Ours-A 79.0% 32.3% 27.0% 24.8% 20.5% 22.5% 19.8% 26.2% 22.0% 48.6% 63.2%
Q
o] ProtoPNet [15] 75.1% 23.2% 12.8% 7.80% 1.80% 4.10% 1.00% 8.90% 2.20% 39.1% 53.0%
Ours-FR 76.3% 30.7% 22.0% 19.3% 13.6% 14.2% 13.0% 19.1% 13.8% 46.0% 60.0%

Table: Classification accuracy of different undefended networks with Linf based
attacks on CUB200



Results on Cars196 on Undefended Models

Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Nettwork (Steps,e) (0,00 (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
AP [14] 91.2% 52.6% 40.2% 37.4% 10.5% 28.8% 6.93% 41.7% 12.9% 12.5% 82.5%

S AP+Triplet [57] 91.1% 54.3% 43.5% 42.4% 14.9% 34.1% 9.54% 45.5% 19.2% 15.6% 84.7%
¢y AP+PCL [35] 90.2% 51.7% 40.5% 39.3% 14.1% 31.8% 9.44% 42.5% 17.5% 16.7% 83.9%
%  Ours-A 88.5% 58.7% 40.2% 48.0% 28.6% 46.5% 21.7% 53.2% 33.2% 19.9% 82.2%
”  ProtoPNet [15] 84.5% 31.2% 9.85% 4.78% 0.01% 2.23% 0.00% 6.5% 0.01% 27.8% 75.5%
Ours-FR 83.8% 60.1% 52.0% 51.83% 41.0% 47.8% 32.9% 51.8% 43.9% 23.4% 75.1%

AP 91.5% 50.1% 37.8% 33.4% 10.3% 23.83% 6.93% 37.9% 12.7% 20.7% 82.8%

& AP-+Triplet [57] 91.0% 56.2% 45.1% 40.5% 13.0% 30.3% 8.70% 45.3% 16.7% 29.0% 85.0%
b AP+PCL [35] 91.3% 61.3% 49.9% 49.0% 19.7% 40.2% 14.1% 52.4% 23.4% 30.6% 85.7%
¢  Ours-A 88.7% 64.4% 54.8% 56.4% 36.7% 51.7% 33.4% 58.1% 41.0% 35.9% 82.5%
”  ProtoPNet [15] 85.6% 34.1% 20.8% 11.3% 1.11% 4.40% 0.5% 14.2% 1.39% 26.5% 75.5%
Ours-FR 85.0% 62.4% 54.7% 54.5% 45.7% 51.2% 38.5% 54.3% 47.6% 36.1% 76.8%

Table: Classification accuracy of different undefended networks with Linf based

attacks on

Cars196.



Results on CUB200 on Robust Models

Base Attacks Clean FGSMFGSMBIM BIM PGD PGD MIM MIM BB-V BB-D
Network (Steps,€) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
© AP* [14] 54.9% 44.9% 24.2% 41.9% 18.2% 41.2% 16.9% 41.9% 18.7% 54.6% 54.0%
7 AP+PCL* [35] 60.7% 50.5% 28.5% 47.1% 22.8% 46.7% 21.6% 47.2% 23.5% 59.5% 59.9%
8 Ours-A* 63.1% 56.1% 34.8% 51.7% 29.6% 50.8% 28.0% 52.0% 32.5% 66.3% 68.0%
>  ProtoPNet* [15]60.1% 44.5% 26.9% 57.1% 10.9% 35.9% 10.3% 37.6% 13.5% 58.4% 59.1%
Ours-FR* 63.0% 53.3% 37.3%49.4% 30.4% 48.1% 28.6% 49.7% 31.1%61.1% 62.0%

o AP* [14] 58.0% 47.5% 29.1% 44.3% 25.6% 44.0% 24.34%44.4% 26.2% 57.0% 57.3%
7 AP+PCL* [35] 61.8% 52.1% 30.9% 48.9% 24.7% 48.6% 23.3% 49.1% 25.4% 60.5% 60.9%
8 Ours-A* 68.2% 57.1% 36.5% 53.2% 30.4% 52.6% 29.2% 53.5% 31.2% 66.2% 66.9%
>  ProtoPNet* [15]55.1% 40.0% 28.9% 26.5% 11.3% 29.7% 9.60% 25.6% 10.2% 53.6% 53.9%
Ours-FR* 64.4% 55.5% 37.4% 51.2% 30.6% 50.4% 28.7% 52.1% 32.3% 62.5% 63.2%

I AP* [14] 55.6% 47.8% 29.2% 44.80%21.0% 44.5% 19.4% 44.9% 21.9% 55.3% 55.2%
5 AP4+PCL* [35] 54.5% 45.4% 26.9% 42.3% 18.2% 41.9% 16.4% 42.4% 19.1% 54.0% 54.0%
2 Ours-A” 62.2% 54.2% 35.7% 51.5% 25.5%51.0% 23.1% 51.6% 26.6% 61.5% 61.9%
0  ProtoPNet* [15]57.9%46.5% 30.3% 41.1% 21.1% 40.3% 18.4% 41.5% 20.9% 56.9% 57.0%
A Ours-FR* 57.6% 49.5% 32.3% 45.8% 23.2% 44.9% 19.9% 46.1% 24.6% 57.1% 57.0%

Table: Classification accuracy of different robust networks with Linf based attacks on

CUB200.
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Results on Cars196 on Robust Models

Base  Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network Steps,e) (1,2)  (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,8) (10,8)
© AP* [6] 86.2% 81.1% 63.6% 78.9% 53.8% 78.7% 50.8% 78.7% 55.1% 85.1% 85.9%
n AP+PCL* [7] 87.4% 80.5% 59.4% 77.6% 48.5% 77.2% 44.9% 77.9% 50.2% 86.0% 87.1%
8 Ours-A* 84.8% 79.8% 63.3% 77.0% 54.6% 76.6% 51.1% 77.1% 55.8% 84.5% 85.6%
> ProtoPNet* [3] 64.4% 53.7% 31.9% 48.9% 16.5% 48.2% 13.4% 49.2% 18.2% 63.8% 64.2%
Ours-FR* 83.7% 76.37% 62.8% 73.5% 55.0% 72.6% 51.9% 73.8% 55.4% 80.8% 82.0%
AP* [6] 88.2% 82.4% 63.4% 79.9% 54.2% 79..6% 50.7% 80.0% 55.7% 86.9% 88.0%
AP+PCL* [7] 88.2% 82.7% 64.6% 80.2% 57.4% 79.6% 54.3% 80.3% 58.5% 87.2% 88.1%
Ours-A* 87.3% 80.29% 67.1% 78.4% 60.15% 78.2% 58.2% 78.6% 61.3% 86.5% 87.3%

VGG-19

ProtoPNet™* [3] 30.0% 19.9% 15.7% 15.0% 16.3% 9.1% 3.00% 3.32% 2.28%
Ours-FR”™ 84.6% 79.6% 66.9% 77.7% 58.6% 76.5% 55.6% 77.8% 59.1%

29.4% 29.7%
83.7% 84.5%

Table: Classification accuracy of different robust networks with Linf based attacks on

Cars196.



Ablation Study

Network

Att-clustering Att-separation Clean

loss loss

(0,0)

PGD
(10,8)

ProtoPNet [15]

69.0%

0.0%

Network [ Att-clustering Att-separation Clean PGD
loss loss (0,0) (10,8)

AP [14] | - - 78.0% 11.7%
- - 78.7% 14.07%

- v 79.6% 0.0%

Ours-A v - 80.0% 19.3%
v v 80.4% 21.8%

Ours-FR

v -
v v

75.7%
69.8%
73.7%
73.2%

13.76%
0.0%
18.7%
30.1%

Table: Contribution of each proposed feature regularization module in
classification accuracy of undefended VGG-16 network



Gradient Obfuscation Study

Ours-A Ours-FR
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Table: Performance of VGG-16 with our proposed approach under different
perturbation strengths.




Adversarial Detection

Receiver Operating Characteristic

Lo Ours-A* and Ours-FR* performs better
than baselines

v * Compute minimum Mahalanobis
G distance from pretrained class
o_ . . . . .
w conditional distributions at each layer
= 7 —— AP*: 0.76
0.2 A 2 ProtoPNet*: 0.67
T Gureat:0.05 * Train a logistic detector on 20% samples
it —— Ours-FR*: 0.96 | d t 80‘V f d . |
0.0+ — o — - and evaluated on res 6 of adversaria
False Positive Rate successful cum correctly classified test
Table: ROC curves tor adversarial data

sample detection on robust VGG-
16 with PGD attack




Conclusion

* We have performed the first study of adversarial attacks for fine-grained
recognition.

* QOur analysis has highlighted the key factor for the success of adversarial
attacks in this context.

* Designed an attention and prototype-based framework that explicitly
encourages the prototypes to focus on the discriminative image regions




Thank you!




