

Indirect Local Attacks for Context-aware Semantic Segmentation Networks

European Conference of Computer Vision 2020 ID: 3995, Spotlight

Krishna Kanth Nakka and Mathieu Salzmann

Indirect Local Attack on Segmentation Networks

- **Contribution.** We expose the vulnerability of context-aware segmentation networks to indirect local attacks, where perturbation in static class region effects the prediction in dynamic class region.
- Experiment Setting.
 - Perturbation inside static class regions
 - road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky
 - Fooling the dynamic class regions
 - > person, rider, car, truck, bus, train, motorcycle, bicycle
 - Targeted attack
 - Dynamic class regions are fooled to output the (spatially) nearest static class label (e.g. car -> road, bus -> road)
 - > potentially creating a collision in autonomous driving scenario.

Overview: Indirect Local Attacks

We discover that modern *context-aware networks* are vulnerable to indirect local attacks. Particularly, the location of perturbation and fooling is **different**.

Dynamic regions belonging to car, pedestrians far away from perturbed area are effected in modern networks (PSANet, PSPNet, DANet) that use surrounding context

Context in Semantic Segmentation Networks

1. Vanilla FCN

2. PSPNet: Context by spatial pyramid pooling

3. PSANet: Context by pointwise spatial attention

4. DANet: Context by spatial & channel attention

Indirect Attacks

- Image-dependent indirect attacks
 - perturbation location predetermined
 - perturbation location optimized to be within few patches
- Image-independent indirect attacks
 - universal indirect attacks
- Metrics:
 - $mIoU_u$ mIoU computed b/w adversarial and normal sample predictions
 - ASR_t percentage of pixels that were predicted as the target label

1. Indirect Attack

- Perturbation location inside static pixel regions
 - predetermined
 - parametric distance d from dynamic class objects

Impact of indirect attacks by perturbing static class pixels that are at least d =100 pixels away from any dynamic class for a 512 x 1024 input image

1. Indirect Attack

- Perturbation location inside static class regions
 - Predetermined
 - not optimized
 - parametric distance d from dynamic class objects

Impact of indirect attacks by perturbing static class pixels that are at least d pixels away from any dynamic class for a 512 x 1024 input image

1. Indirect Attack

- Perturbation location inside static class regions
 - Predetermined
 - not optimized
 - parametric distance d from dynamic class objects

Impact of indirect attacks by perturbing static class pixels that are at least d pixels away from any dynamic class for a 512 x 1024 input image

Experiments: Indirect Attack

Network	d = 0	d = 50	d = 100	d = 150
FCN [29]	$0.11 \ / \ \underline{64\%}$	$0.77 \ / \ 2.0\%$	0.98 / <u>0%</u>	1.00 / 0.0%
PSPNet [53]	0.00 / 90%	0.14 / 73%	$0.24 \ / \ 60\%$	$0.55 \ / \ 23\%$
PSANet $[54]$	0.00 / 90%	0.11~/~71%	$0.13~/~\mathbf{65\%}$	0.29 / 47%
DANet $[12]$	0.00 / 90%	0.13 / 81%	$0.48 \ / \ 43\%$	$0.80 \ / \ 10\%$
DRN $[50]$	$0.02 \ / \ 86\%$	0.38 / $22%$	0.73~/~3%	$0.94 \ / \ 1.0\%$

 $mIoU_u/ASR_t$

(a)
$$\ell_{\infty}$$
 attack

Impact of local attacks by perturbing pixels that are at least *d* pixels away from any dynamic class.

2. Adaptive Indirect Local Attack

Optimally find the best locations to perturb

$$\delta^* = \arg\min_{\delta} \ \lambda_2 \sum_{t=1}^T \|\mathbf{M}_t \odot \delta\|_2 + \lambda_1 \|\delta\|_2^2 + J_t(\mathbf{X}, \mathbf{M}, \mathbf{F}, \delta, f, \mathbf{y}^{pred}, \mathbf{y}^t)$$

- : number of patches T
- X : input image
- : perturbation y^{pred} : predicted label map δ
- \mathbf{M} : perturbation mask y^t : targeted label map
- \mathbf{F} : fooling mask

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level

(a) Adversarial image (b) Perturbation (c) Normal Seg. (d) Adversarial Seg.

2. Adaptive Indirect Attack

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level
 - Sparsity

.

 percentage of pixels that are not perturbed relative to the initial perturbation mask

2. Adaptive Indirect Attack

Cityscapes

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level
 - Sparsity
 - percentage of pixels that are not perturbed relative to the initial perturbation mask

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level

PASCAL VOC

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level

- Perturbation location
 - Confined to few patches in static regions
 - Optimized by group sparsity prior at patch level

Experiments: Adaptive Indirect Attack

Network	S=75%	S=85%	S = 90%	S=95%
FCN [29]	$0.52 \ / \ \underline{12\%}$	0.66 / <u>6%</u>	$0.73 \ / \ \underline{4\%}$	0.84 / 1.0%
PSPNet [53]	0.19 / 70%	0.31 / 54%	0.41 / 42%	$0.53 \ / \ 21\%$
PSANet [54]	0.10 / 78%	0.16 / 71%	0.20 / 64%	0.35 / 44%
DANet [12]	0.30 / 64%	0.52 / 43%	0.64 / 30%	$0.71 \ / \ 21\%$
DRN [50]	0.42 / $23%$	0.55~/~13%	$0.63 \ / \ 9\%$	0.77~/~4.5%

 $mIoU_u/ASR_t$

(a) Cityscapes

Network	S=75%	S=85%	S = 90%	S=95%		
FCN [29]	$0.50 \ / \ \underline{32\%}$	0.59 / <u>27%</u>	0.66 / 22%	$0.80 \ / \ \underline{12\%}$		
PSANet [54]	0.28 / 68%	0.21 / 77%	0.20 / 80%	0.30 / 69%		
$mIoU_u/ASR_t$						
(b) PASCAL VOC						

Performance of adaptive indirect local attacks for a given sparsity level

- Image-independent
- Perturbation location ٠
 - confined to a single patch at the center
- Untargeted attack to fool entire image ٠
- (a) Adversarial image (b) Ground truth (c) FCN

Universal local attacks on Cityscapes and PASCAL VOC using a single fixed size patch

Universal local attacks on Cityscapes using a different sizes of patch

- Image-independent
- Perturbation location
 - confined to a single patch at the center
- Untargeted attack to fool entire image

- Image-independent
- Perturbation location
 - confined to a single patch at the center
- Untargeted attack to fool entire image

Universal local attacks on Cityscapes using a different sizes of patch

Universal local attacks on PASCAL VOC using a single fixed size patch

- Image-independent
- Perturbation location
 - confined to a single patch at the center
- Untargeted attack to fool entire image

Universal local attacks on PASCAL VOC using a single fixed size patch

- Image-independent
- Perturbation location
 - confined to a single patch at the center
- Untargeted attack to fool entire image

Experiments: Universal Attack

Network	$51 \times 102 (\mathbf{1.0\%})$	$76 \times 157 (2.3\%)$	$102 \times 204 (\textbf{4.0\%})$	$153\times 306 (\textbf{9.0\%})$
FCN [29]	$0.85 \ / \ \underline{2.0\%}$	$0.78 \ / \ 4.0\%$	$0.73 \ / \ 9.0\%$	$0.58 \ / \ 18\%$
PSPNet $[53]$	0.79~/~3.0%	0.63~/~11%	0.44~/~27%	0.08 / $83%$
PSANet [54]	$0.41 \ / \ \mathbf{37\%}$	0.22 / $60%$	0.14~/~70%	$0.10 \ / \ 90\%$
DANet $[12]$	0.79~/~4.0%	0.71~/~10%	0.65~/~15%	0.40 / $42%$
DRN [50]	0.82 / $3.0%$	0.78~/~8.0%	0.71~/~14%	0.55 / $28%$

 $mIoU_u/ASR_u$

Impact of universal local attacks by perturbing patch of size h x w (area%) for 512 x 1024 input image

Experiments: Attack Detection

 We detect the region of fooling by computing Mahalanobis distance between feature and nearest class-conditional distribution at every spatial location j

$$C(\mathbf{X}_{j}^{\ell}) = \max_{c \in [1,C]} - \left(\mathbf{X}_{j}^{\ell} - \mu_{c}^{\ell}\right)^{\top} \mathbf{\Sigma}_{\ell}^{-1} \left(\mathbf{X}_{j}^{\ell} - \mu_{c}^{\ell}\right)$$

- \mathbf{X}_j^ℓ feature at location j and layer l
- μ_c^ℓ Class-specific mean at layer I
- $\mathbf{\Sigma}^\ell$ covariance at layer l

Experiments: Attack Detection

Notworks	Perturbation	Fooling	$\ell_{\infty} \ / \ \ell_2$	Mis.	Global AUROC	Local AUROC
Networks	region	region	norm	pixels $\%$	SC [48] / Re-Syn [25] / Ours	Ours
FCN [29]	Global	Full	0.10 / 17.60	90%	1.00 / 1.00 / 0.94	0.90
	UP	Full	0.30 / 37.60	4%	0.71 / 0.63 / 1.00	0.94
	\mathbf{FS}	Dyn	0.07 / 2.58	13%	0.57 / 0.71 / 1.00	0.87
	AP	Dyn	0.14 / 3.11	1.7%	0.51 / 0.65 / 0.87	0.89
PSPNet [53]	Global	Full	0.06 / 10.74	83%	0.90 / 1.00 / 0.99	0.85
	\mathbf{UP}	Full	0.30 / 38.43	11%	0.66 / 0.70 / 1.00	0.96
	\mathbf{FS}	\mathbf{Dyn}	0.03 / 1.78	14%	0.57 / 0.75 / 0.90	0.87
	AP	Dyn	0.11 / 5.25	11%	0.57 / 0.75 / 0.90	0.82
PSANet [54]	Global	Full	0.05 / 8.26	92%	0.90 / 1.00 / 1.00	0.67
	UP	Full	0.30 / 38.6	60%	$0.65 \ / \ 1.00 \ / \ 1.00$	0.98
	\mathbf{FS}	\mathbf{Dyn}	0.02 / 1.14	12%	0.61 / 0.76 / 1.00	0.92
	AP	Dyn	0.10 / 5.10	10%	0.50 / 0.82 / 1.00	0.94
DANet [12]	Global	Full	0.06 / 12.55	82%	0.89 / 1.00 / 1.00	0.68
	\mathbf{UP}	Full	0.30 / 37.20	10%	0.67 / 0.63 / 0.92	0.89
	\mathbf{FS}	Dyn	0.05 / 1.94	13%	0.57 / 0.69 / 0.94	0.88
	AP	Dyn	0.14 / 6.12	43%	0.59 / 0.68 / 0.98	0.82

Attack detection on Cityscapes with different perturbation settings

Global – full image perturbations UP - universal patch perturbations. FS – full static region perturbations AP – adaptive attack perturbations

Summary

- We show the vulnerability of modern context-aware networks to various indirect attacks
- We propose adaptive indirect attack based on group sparsity
- We evaluate the impact of context to universal fixed-size patch attacks
- We propose pixel-level detection of fooling regions based on Mahalanobis distance